
A Guide to FRDCSA and POSI

If you are interested in obtaining the latest FRDCSA Virtual Machine distribution, helping with the
release, or collaborating on projects, please email me at andrewdo@frdcsa.org

FRDCSA

is a project under continual development since 2001. The primary goal is to develop a free software
artificial intelligence system which can help to improve the quality of life. The method undertaken is
to collect and package such software, and to write it ourselves where not already available.

The Panoply GNU+Linux VM distribution is an experimental release of the FRDCSA. It is not
intended for public redistribution at this time (it has to be cleaned up for the public release). It is a 20
GB VirtualBox image.

h ttp://frdcsa.org

http://frdcsa.org/frdcsa

IRC: #frdcsa@freenode.net

POSI

is a platform under development for group collaboration. It uses semantic web tools to map out
information on members' goals, interest and abilities. From this and additional information about
which goals require which skills and what topics the goals pertain to, we can estimate which
goals/projects would be of interest to different people. POSI was initially presented at Flourish 2009,
at which time we did not have a shared goaling system completed. Fortunately, in 2011, we have the
SPSE2 Shared Priority System Editor v2. However, SPSE2 does not at this time allow distributed
editing of goal contexts, further work is needed. It does however allow for editing personal goal
systems. SPSE2 is available as part of the Panoply GNU+Linux distribution.

The latest POSI web-based interface is accessible at:

http://intranet.posi.frdcsa.org

http://posi.frdcsa.org

IRC: #posi@freenode.net

About the Author

Andrew Dougherty
See http://frdcsa.org/~andrewdo

mailto:andrewdo@frdcsa.org
http://posi.frdcsa.org/
http://intranet.posi.frdcsa.org/
http://frdcsa.org/frdcsa
http://frdcsa.org/
http://frdcsa.org/

An Expert System that Plays the Game
...OF YOUR LIFE

Like Deep Blue or GNUGo, but analyzes the facts of your
situation and helps prioritize and recommends good goals

Pre-Alpha version available on FRDCSA DVD or at:
http://frdcsa.org/~andrewdo/flourish-2011-frdcsa.iso

Sample GNUGo Situation Sample Life Situation
(deffacts init
 (has-job John-Doe Teacher)
 ;; (not (disqualified-from-receiving-foodstamps John-Doe))
 (address
 (name John-Doe)
 (firstname John)
 (lastname Doe)
 (address1 13-Berry-Street)
 (city Sheridan-Lake)
 (state Colorado)
 (zipcode 81071)
 (country USA)
)
 (has-medical-condition John-Doe Diabetes)
 (has-health-insurance John-Doe Blue-Cross)
 (has-bank-account John-Doe PNC-Bank)
 (father-of John-Doe Steven-Doe)
 (mother-of John-Doe Margarette-Doe)
 (brother-of John-Doe Mark-Doe)
 (relationship-strength John-Doe Steven-Doe okay)
 (relationship-strength John-Doe Mark-Doe good)
 (has-friend John-Doe Jeremy-Pierce)
 (relationship-strength John-Doe Jeremy-Pierce fair)
 (has-friend John-Doe Dina-M-James)
 (relationship-strength John-Doe Dina-M-James good)
 (has-automobile John-Doe Chevy-Camero)
 (has-laptop John-Doe dell-laptop)
 (has-computer John-Doe office-computer)
 (debt (debtor John-Doe) (amount 3000) (creditor Fannie-Mae) (type Student-
Loan))
 (debt (debtor John-Doe) (amount 500) (creditor Flaherty-Foot-Clinic) (type
Medical))
 (has-goal John-Doe "(is-self-reliant John-Doe)")
 ;; (not (is-emotionally-secure John-Doe))
 (has-fitness-plan John-Doe John-Doe-s-fitness-plan)
 ;; (not (has-financial-plan John-Doe ?plan))
 ;; (not (has-budget John-Doe ?budget)))

)

Task Planning and Monitoring

Ask to See a Demo of

Android Hands-Free Voice Control

Seamlessly interact with
your personal free software
A.I. on your home computer
through a cell-phone based
speech interface, to record
goals, ask questions and
generally interact with

software agents.

Document Management and
Electronic Filing System

POSI
Record your Goals, Interests and Abilities using SPSE2 and

form dynamic teams to accomplish shared goals. (See slides)
http://intranet.posi.frdcsa.org

Job Search Tool
For resume building, relevance ranking, rapidly responding

to job postings, tracking the results, and invoicing.

http://intranet.posi.frdcsa.org/

Semi-Automatically Create Packages
Quickly For Debian and Ubuntu Linux

FRD
Formalized Research Database

is intended as a collection of
all mathematical knowledge.
It implements a transfinite

solution to Hilbert's Program.
The goal is to build a very
capable theorem proving

system, capable of resolving
as much of mathematical truth

as is possible and necessary
efficiently.

CSA
Cluster Study and Apply

is a software toolchain for
locating, packaging and using
existing free and open source

software. CSA has an
emphasis on practice (not

mathematical, but real-world
problems, such as software
conglomeration, document

management, etc).

EXISTING
CAPABILITIES:
(Non-exhaustive) List of the Capabilities of the
FRDCSA via internal and external packages

KEY:
(#system) -> not fully implemented
(%system) -> partially performs capability
(!system) -> integrated but not available due
to licensing
() -> no system implements this

capability yet

Misc
Multi-agent system (UniLang)
Self-directed goal setting (Architect)

Natural Language Processing
Question Answering (QUAC/OpenEphyra/Aranea/
%TextMine/AnswerBus)
Machine Translation (Apertium|Google)
Query Expansion (lucqe)
Recognizing Textual Entailment
(#FreeRTE/CAndC/#Stanford-RTE)
Natural Language to Logic (CELT/#Formalize/!
ResearchCyc/%APE)
Controlled Language (APE|ACEWiki)
Shallow Parsing (Assert|#Shalamaneser)
Sentiment Analysis (OpinionFinder)
Anaphora Resolution (JavaRAP|#BART)
Sentence Similarity (%Meteor|%Stanford-RTE)
Text Clustering
(AI::Categorizer/Rival::AI::Categorizer/
PerlLib::Cluster/crossbow/OSKM/)
TFIDF (PerlLib)
Topic Gisting (ConceptNet)
Affective Analysis (ConceptNet)
Word Sense Disambiguation (SenseRelate)
Named Entity Recognition
(Cage/CAndC/NamedEntity/OpenNLP/Simple/
Stanford/TagEn/TextMine)
Tokenization (treebank/TextMine)
Grammar Checking (LinkGrammar)

Summarization (ConceptNet/MEAD)
Parsing
(Charniak/Lingua::EN::Tagger/LinkGrammar)
Predicate Parsing (%Assert/Enju)
Abbreviation Extraction
Body Text Extraction (BTE)
Concept Extraction (#TMT)
Date Extraction (TempEx)
Definitional Extraction ()
Fact Extraction (#fact-extraction/%Assert)
Information Extraction (T-
Rex/MinorThird/Elie/#MDR/#AIE)
Logic Form Extraction (FreeLogicForm/CAndC)
Temporal Ordering Extraction (TARSQI)
Terminology Extraction (TermEx)
Semantic Annotation (OpenCalais)
Topic Detection and Tracking ()
Definitional Question Answering ()
Bad Word Lists ()
Word Connotation (EAT)
Rhyming (rhyme)

HTML Processing
Event Extraction (%GeekEventAggregator)
URI Extraction
(WWW::Mechanize/PerlLib::URIExtractor)

AI/Knowledge Representation
Knowledge Based System (#FreeKBS/OpenCYC/#
%Sayer)

Studying
Digital Library (DigiLib/Greenstone/#DSpace)
Intelligent Tutoring System (CLEAR/#SystemX)

Humanitarian/Life Support
Task Management (#Manager Todo/#PSE)

Gourmet Meal
Planner

Personal Inventory
Management

and many more:
akahige
all
alleyoop
antispam-console
antispam-node
apartment-finder
architect
assess
audience
bard
boss
brainleach
broker
busroute
canvasser
classify
clear
coauthor
code-monkey
corpus
crawler
critic
cso
diamond
digilib
disciple
do
ems
ender
evangelist
event-log
event-system
fieldgoal
formalforum
formalize
frdcsa-el
frdcsal
frdcsa-reference
freekbs
freekbs2
fweb
fweb2
generix
gourmet
gourmetjr
job-search
kbfs
kmax
learner
manager
mantra
meeting
mmi
mush
myfrdcsa
normal-form
ocra
packager
paralegal
parking-system
perform
perllib
pgourmet
picform
posi
problemspace
pse
pverber
quac
radar
reasonbase
rwhois
samwise
sanctus
savant
score
seeker
setanta
setanta-client
shops

silo
sinless
socbot
source-hatchery
study
svrs
symbiosis
systemx
task1
transport
unilang
vanguard
verber
wow
3d-model-library
3d-scene-reconstruction
academician
acewiki-extensions
action-planner
advanced-ttyplay
agent
aie
aigo
analysis-engine
android
android-frdcsa-client
archives-manager
argument-system
audience-message-handler
auto-builder
auto-packager
better-locate
bill-tracking-system
biometrics
bluetooth-tools
bookmark-clustering
bookmark-clustering-old
bootstrapping-minority-language-resources
brainstorm
broker-buy-sell-system
budget-system
car-maintenance
cause-effect
ccpp
chap
coauthor-interactive-natural-language-generator
code-language
code-search
component-systems
computational-ethicist
consultant-support
cooperative-game-archive
corpus-manager
critic-browser
crm
csa
cultural-systems
dandd
data-manager
debt-manager
definition-extraction
dialog-interface
discourse-representation
distributed-scraper
documentary-generator
documentation-central
drivers-education-and-safety-training
e-health-clinic
elderly-affairs-management
emacs-nlp
emacs-poetry-mode
email2speech
email-prioritization-and-urgency-routing
encoder
entertainment-center
entertainment-ideas
entity-database
ethical-consumer-system
ethical-systems-analysis
event-extractor

fact-extraction
faster-apt-file
federated-agents
file-organizer
files
folksonomy
food-ontology
frd
frdcsa-at-home
frdcsa-browser-extensions
frdcsa-bug-tracking
frdcsa-dashboard
frdcsa-installer
free-knext
free-logic-form
free-rte
free-wordseye
friend-finder
full-planner
fweb-translate
game-time
genealogy-system
get-help
golden-retriever
google-summer-of-code-application
gourmet2
grant-manager
grocery-bill-splitter
handwriting-recognition
historian
home-automation
house-rules
icodebase-testing
id-card-creator
idiom-database
infolab
interactive-execution-monitor
internet-research-tool
interrelator
ipvord
irc-tdt
irish-nlu
its
jess-debugger
js-application-agent
js-form-filler
js-rapid-response
language-learning
lessons-learned
license-manager
link-checker
linux-media-acquisition
list-of-lists
location-logic
log-analysis
logic-form-to-nl-generation
market-analyzer
marketing-manager
market-researcher
mass-service-registration
mdr
media-library
mental-benchmarks
menu-annotator
metasite-extractor
metaverse
miscellaneous-games
model-based-problem-solver
monitoring-agent
movie-recommendation
musical-system
music-composition-system
music-control-system
news-monitor
nl-to-fol
nl-to-pddl
nlu
nooks-and-crevices
notification-manager
object-recognition

ofcs
openoffice-gramadoir-integration
option-classifier
ossmole-assistant
package-installation-manager
paperless-office
password-manager
perl6-stdlib
personal-adaptive-filtering
poverty-survival-system
pposi
problem-database
problem-monitor
profession-agent-factory
pse2
pse-x
raiders-of-the-ftp-sites
reading-analyzer
reading-comprehension
recovery-frdcsa
requirements-optimization
research-ontology
resource-reservation-system
restaurant-music-system
resume-critic
robotic-book-scanner
rsr
rte
ryans-video-game
save-tara
sayer
sayer-learner
schizophrenai
setanta-agent
social-intelligence
social-recreational-game-playing-and-development
software-evaluator
software-finder
software-indexer
software-ontology
special-lug-admin
spreading-activation-package-search
spse
story-generation
story-teller
study-memorization-subsystem
suppose-suppose
suppositional-decomposer
suppositional-reasoner
system
system-ie
system-implementor
system-recommender
task-manager
task-tagging-system
tdt
temp-agency-locator
temporary-system
termios
terms-and-conditions-analyzer
text-analyzer
the-frdcsa-book
thinker
to.do
todo-systems
travel-system
twitter-follower-analyzer
unilang-message-classifier
vanity-search
various-perl-libraries
virtual-hacklab
vm-manager
vm-release
web-analytics
web-backup
windows-power-operating-system
workflow-planning
workhorse
xwordnet-utils

Grant Proposal:

FRDCSA Initial Release
Sign Petition On Table

Amount Requested:
$2250 +- $750

Synopsis

The FRDCSA consists of, among other things, over 1700 Perl5 modules in various stages of
completion that operate in a tightly interwoven fashion. There are many entire systems for novel and
important applications, especially from various subjects in Artificial Intelligence, as well as wrappers
and APIs for other useful systems. Unfortunately, owing to their interdependence, lack of tests and
documentation, need for a systematic renaming and deidentification - distributing them through CPAN
has not yet been accomplished, although most of the software required to compute their distribution has
been written. I seek a grant to facilitate their release either in majority or totality.

Benefits to the Perl Community

This grant IMHO would greatly improve the situation for Artificial Intelligence through Perl. But the
benefits are not limited to pure theory, they are very practical - as these techniques, and the systems for
which wrapping is provided, would then be instantly accessible to the entire Perl community. I do not
expect the project to be understood from the getgo, however, as Perl programmers come across it, by
searching CPAN for various tools, it should draw a small amount of attention - enough to bring the true
benefits of the cohesive and interwoven system to the attention of Perl power users. As I am not a Perl
expert, I am not familiar with all of the greatest aspects of Perl - however, I do know that there are
many systems lacking for which I have labored over 10 years to provide the matching capabilities.
Getting some attention for my project would be important to secure the goals of the system. The
system, such as it is, is an attempt to implement a transfinite implementation of Hilbert's program. In
this sense, it contains as its goal to solve all mathematical problems, which are thought to impose
themselves on the real world. Goedelian incompleteness is not an obstacle, it is the cornerstone, based
on associating increasingly complete systems of logic with ordinals ala Turing 1939.

How will this advance the release of Perl 6?

Interesting question that was not in the first template I filled out. I have often wondered whether this
system is necessary to complete Perl6. I cannot comment precisely on exactly what it will do wrt the
existing Perl 6 spec. However, if that spec is mutable, I think there are essential components. That is to
say, if we can think of Perl 6 as being a more capable or "intelligent" version of Perl, then the
availability of these tools will greatly enhance and furnish that goal. For instance, there is limited
existing CPAN support for Semantic Web, Theorem Proving, or certain individual techniques from
Natural Language Processing. One component of the FRDCSA is FRDCSAL which is a Perl based

programming language where you write the code in English, and the code is translated to logic and
executed. True, these are Perl5 modules, but when the automated refactoring system is complete, and
the formal specification is complete - it will be possible to translate semi-automatically to Perl6. There
is also a sub-project called Perform: which is a knowledge base about algorithms and data structures -
which includes their complexity and all kinds of other features, intended as a devastatingly complete
standard library for Perl6.

Deliverables

Many to all modules released.

Here is a very recent module list:

http://frdcsa.org/~andrewdo/projects/module-list.txt

For more information, please see the ancient description. Upon request I can regenerate the pages to
reflect the current situation.

http://frdcsa.onshore.net/frdcsa

I have just this year started writing GUIs as frontends for various systems: Here is a page on that:

http://frdcsa.org/~andrewdo/projects/frdcsa-guis

There is also:

http://frdcsa.org
http://posithon.org
http://intranet.posithon.org

I am not familiar with milestone documents. The critical path is in the process of being computed, but
won't be finished prior to the actual release. Here is an outdated document that sort of documents that:

http://files.meetup.com/970635/semweb.pdf

I have since added nested formulae and First Order w/Equality inferencing to FreeKBS2 - which makes
the planning system much more capable - however, it has not been fully updated to use the new
backend and so is not usable at the moment.

Also see number 13 at:

http://frdcsa.org/~andrewdo/projects/frdcsa-guis/

Project Details

The project is based primarily on Algorithmic Information Theory, and "Information Theoretic
Limitations of Formal Systems". The basic idea is that, given a particular Turing machine, in order to

http://frdcsa.org/~andrewdo/projects/frdcsa-guis/
http://files.meetup.com/970635/semweb.pdf
http://intranet.posithon.org/
http://posithon.org/
http://frdcsa.org/
http://frdcsa.org/~andrewdo/projects/frdcsa-guis
http://frdcsa.onshore.net/frdcsa
http://frdcsa.org/~andrewdo/projects/module-list.txt

accomplish tasks of increasing complexity, the software must ultimately grow in program length.
Therefore, a necessary but insufficient condition for an "Artificial Intelligence" that has many
capabilities is that it is large. This means that one heuristic for finding existing such systems is that the
system is large. This immediately makes one think of Perl, Debian and Emacs - which all check out as
extremely capable systems. The system is based upon these, but will not be exclusive to them.
However, as comprehensive as CPAN is, there are still elements missing.
Hence, we contemplate how to grow the system - there are two approaches - write software by
ourselves - or find existing software. Both are taken. To find existing software, both existing large
metasites (Sourceforge/Freshmeat/Google Code/etc) and active focused crawling for the location of
new software. The Flossmole project releases data. To classify the data, the Debian tags and
Sourceforge categories have been trained via an SVM text classifier to classify new entries according to
these folksonomies. All this information goes into the CSO (Comprehensive Software Ontology).
Focused crawling is achieved with the radar-web-search system, a multithreaded spider that searches
several ply deep on websites for files that would seem to be useful. These are downloaded and go
through an entire system which I cannot help but to compare to a digestive system. They are (semi-)
automatically packaged for Debian using the Packager system.

For writing software, there are an equal number of sundry systems that expedite that process. For
instance, all kinds of project templates and functions exist in the BOSS system. A particularly useful
trick is ppi-convert-script-to-module.pl, which takes a script and converts it bit by bit to the standard
Object Oriented Perl Module format. It is an example of a hand-coded automated refactoring that is
going to be rearchitected into a deliberative automated refactoring system.
What is the goal of the project? The project aims to characterize all arguments for and against various
beliefs, audit them for relative considerations, and present people with, if possible, a uniquely action
guiding moral support intelligent agent. The basic goal of the project is to resolve problems that affect
sentient beings in an equinaminous and peaceful manner. Many resource conflicts can be avoided
through more rational behavior.

Inch-stones

There are several primary tasks for the project wrt CPAN. They are: Release, Refactor, Test and
Document. The first three have corresponding automatic implementations: Release -> Task1, Refactor
-> CodeMonkey, Test -> icodebase-testing. Documentation will be largely by hand and/or copied from
my existing documents. Task1 is mostly complete. Refactor is 10-15% complete. Test is not really
started. To fit within the time frame of the 3 month release schedule, I will focus only on Release
(unless it happens faster than expected).
Release is divided into: Dependencies, Renaming, Deidentification, Testing. Dependencies are already
computed but will be tidied up (have to reacquaint myself with the Task1 codebase), and possibly will
now use FreeKBS2 logic programming to simplify the tasks. Testing will be only as necessary. Only
about 2% of tests have been written. Renaming requires testing (to prevent large scale breakages), but
is otherwise straightforward. Deidentification is tedious, however the Classify deidentification system
is about 50-60% complete.

This should be enough to get the project into use and should generate future interactions which will
ensure its completion.

Project Schedule

Project will take <= 3 months.
Can begin immediately upon receipt of initial funding segment.

Completeness Criteria

The project will be complete if most of the important systems of the FRDCSA are in CPAN and are not
in a catastrophic condition. Given that there are 1700 modules, it is not reasonable (unless the
automated refactoring system is finished, populated with adequate rules, and extremely accurate) to
expect me to bring the code up to the quality standards that I myself do not know. Therefore, having
them available in CPAN should be enough to attract attention to them, at which point in time what I
need to do will be told to me rather than queried blindly and annoyingly of Perl experts. Many of them
already function perfectly adequately or even superbly.

Natural Language Understanding and
Computational Semantics

The presentation on Natural Language Understanding and Computational Semantics will outline recent
work on several areas of interest to natural language processing - especially Recognizing Textual
Entailment and Natural Language Understanding. The method employed is conversion of natural
language (through various approaches such as compositional grammars based on Lambda Calculus,
statistical dependency parsers, etc) to a logic based interlingua. In our case we focus on LCC-style
logic forms in first order logic and their usage in Discourse Representation Theory. We then show how
to reason with the interlingua using automated theorem proving tools and model building tools.

The second part of the talk will focus on independent research into Natural Language Understanding
based on breaking the text down and using classifiers, knowledge sources, various NLP software
systems, etc to assert additional information (i.e. text markup). The idea is to build chains of proofs to
create a system of constraints delineating the possible meanings in context of any textual/document
source. Metadata extends to arbitrary knowledge regarding the document and source. The idea is to
build a set of tools for literary interpretation that allows us to reason more precisely with the meaning
of utterances and to use this information to support persons. A recent project has been undertaken to
create annotated documents for all freely available knowledge sources, such as Wikipedia, Gutenberg
and Google Books public domain content.

If approved, the concept of the talk will be refined to include all the practical prerequisites required to
understand the talk. I would also like to illustrate some of the practical issues involved that others can
become involved with immediately, especially the packaging and wrapping of existing NLP software.

Three Things the Audience Will Learn: How to formalize language, how to develop logically consistent
metadata and insights, how to contribute to such software.

The Automated Lifestyle: Using and
Developing Panoply GNU+Linux

This workshop is focused on getting the users familiar with usage and development of Panoply
GNU+Linux. Panoply Linux, currently only available as a 20 GB VM image, contains the full
FRDCSA system (but without the data files, that would be over 100 GB), covering all of my research
into artificial intelligence. There are many systems that are only available with Panoply (until such
time as proper Ubuntu packages can be built and CPAN modules created): such as Paperless-Office,
Shared Priority System Editor v2, Job-Search, RADAR, and CLEAR, and tools such as FreeKBS2 and
UniLang. Many more are not finished but already present in substantial form. I wish to teach the
various specialized systems of the FRDCSA, so that users will have a deep understanding of how to use
these systems for their application development. The primary systems that they will learn are UniLang,

a multiagent interprocess communication system, and FreeKBS2 - a Semantic Web knowledge-based
system for storing and reasoning with assertions in many logics and notations.

In additional to the internal systems, I will also cover a wide variety of external software, mostly in the
area of natural language processing and understanding.

We'll then proceed to illustrate basic packaging techniques and also packaging using the Packager
system, which helps to semi-automatically retrieve and package software for Debian and Ubuntu. We
will actually roll a package in the workshop.

We'll then show how to agentify the packaged software for use with UniLang, or separately under the
Org::FRDCSA::System or Org::FRDCSA::Capability namespaces.

The actual workshop will be represented as a pedagogical domain with the SPSE2 system - it will be
represented as a series of individual learning activities with specified content dependencies and
expected durations. The SPSE2 will then generate a precise schedule and walk us through the
completion of the workshop. For more information on this process you can refer to an upcoming and
as of yet unfinished paper: "Temporal Planning and Inferencing for Personal Task Management with
SPSE2". http://frdcsa.org/~andrewdo/writings/icaps-2011-paper.pdf

Lastly, the concepts behind the POSI group will be presented. Users may wish to index and share their
capabilities and doing so begin collaboration using the SPSE2 system. I gave a talk on POSI at
Flourish 2009 and this will be a follow-up to that talk, now that the POSI systems are mostly working:
http://www.slideshare.net/aindilis/posi-overview

Three Things the Audience Will
Learn:

How to package software for Debian&Ubuntu; how to use and develop Panoply GNU+Linux; how to
collaborate with others using SPSE2.

