
Temporal Planning and Inferencing for Personal Task Management with SPSE2

Andrew Dougherty
FRDCSA Project

1125 Village Center Pkwy Unit 1. Aurora, IL 60506
andrewdo@frdcsa.org

Abstract

SPSE2 is a free and open source software system for
personal task management that uses publicly available
temporal planning systems and tools. It provides a GUI
for users to edit planning domains consisting of asser-
tions about goals and their interrelations and tempo-
ral, cost and other constraints. It also integrates calen-
dar and transportation planning information. A voice-
controlled mobile application on the Android platform
for goal setting, interactive execution monitoring and
replanning is currently under development. The rest of
this paper concerns details and planned features, appli-
cation areas and future work; as well as various other
AI-related technologies being used to extend the use-
fulness of the core functionality. For example, compu-
tational semantics software will extract models of the
meaning of the goals and translate into elements of the
planning language, and deontic logics will help to de-
termine the consistency of the goals and plans with the
user’s preferred ethics and value systems. The work is
being conducted as part of the Cognitive Prostheses re-
search focus of the FRDCSA project.

Introduction
This paper documents progress within the Formalized Re-
search Database; Cluster, Study and Apply (FRDCSA)
project towards applying existing AI planning and schedul-
ing tools to the domain of personal task management. This
tool is being developed for general use, but particularly
for 1) those with disabilities impairing so-called executive
skills, and 2) those in poverty who can only secure ba-
sic needs with difficulty. Disabilities that affect execu-
tive skills include Pervasive Developmental Disorders such
as Autism and Schizophrenia. “They are called executive
skills because they help people execute tasks. Every per-
son has a set of 12 executive skills (self-restraint, work-
ing memory, emotion control, focus, task initiation, plan-
ning/prioritization, organization, time management, defin-
ing and achieving goals, flexibility, observation and stress
tolerance)” (Martin 2006). Additionally, the proliferation
of inexpensive Wi-Fi-enabled, Android-based smart phones,
combined with free software and perhaps solar-power charg-
ers, has provided a novel vector to help to supply the
homeless or similarly disadvantaged with practical, survival-
oriented computing resources. Anecdotal evidence suggests

further that the executive skills of those even without such
limiting factors still may have room for improvement, espe-
cially when compared to a more optimal automated negoti-
ation and coordination of temporal constraints and privacy
preferences. Such improvements in local planning efficacy
and resource utilization could have macroscopic effects and
relax otherwise exacerbated resource conflicts. Addition-
ally, the application of user-defined ethical analytics through
computational deontology offers a method to constrain the
space of possible actions that are available to intelligentper-
sonal agents. Therefore, development of a free and open
source (FOSS) personal task management system that inter-
faces with existing sources of data such as calendars, routing
applications and mobile phones promises to help to improve
the quality of life generally.

Overview of the FRDCSA Project
The first and major goal of the FRDCSA project, 11 years
and running, is to help to provide for better security and
quality of life for all sentient beings. A major assump-
tion is that FOSS artificial intelligence, engineered correctly
and with unlimited redistribution, satisfices this goal. To
avoid polemics, the project is concerned only with imple-
menting a restricted form of weak AI. The approach, mo-
tivated by algorithmic information theory and information-
theoretic computational complexity of metamathematics
(Chaitin 1974), has two prongs - to develop an increasingly
complete theorem proving system and library (called For-
malized Research Database (FRD)), and to develop an in-
creasingly complete collection of practical software (Clus-
ter, Study and Apply (CSA)). Perhaps, the two approaches
are in some sense theoretically equivalent by the Curry-
Howard isomorphism, which would seem to say that the
classes of programs and proofs are coextensive. So ide-
ally the FRD is a practical, transfinite implementation of
Hilbert’s program, which can never be completed, but which
can, by engineering a sequence of logics each more com-
plete than the previous, decide in the limit all problems that
are not absolutely undecidable (should any of those exist).
This idea may be similar to or the same as one of Turing of
creating a sequence of logics, each more complete than the
previous, based upon the assumption of the existence of in-
creasingly large constructible ordinals (Turing 1939). Alter-
natively, the CSA consists of a set of programs for building



and packaging most or all known freely available software
systems and datasets.

The primary goal of the project and limitations to personal
productivity necessitate the development of tools, including
a personal task management system, which provide tangi-
ble benefits to all users and in particular those working on
FOSS software development. Yet such a system has been
reasonably difficult to engineer in the context of the project,
as evidenced by the almost 10 such systems in various stages
of completion, many not mentioned here. Also, it has been
difficult to find an accurate name for this entire collection of
functionality.

Overview of the SPSE2 System
SPSE2 is a system for personal task management. It pro-
vides a GUI for users to edit planning domains. These do-
mains consist of assertions in a knowledge base regarding
goals, their interrelations, and constraints of types suchas
temporal and cost. This GUI allows users to specify the
constraints, and then the domain is converted into a PDDL
domain and a plan generated. Future versions will include
a fully functional and re-engineered interactive execution
monitor that will walk the users through the plans and allow
replanning from hands-free, voice-controlled cell phones.
Ideally the interface would expand to handle more types
of plans besides linear. There are several primary FRD-
CSA systems involved architecturally, including the Univer-
sal Language (UniLang), Free Knowledge-Based System v2
(FreeKBS2), Verber, and Planning, Scheduling and Execu-
tion (PSE) systems.

Figure 1: Shared Priority System Editor v2

System Architecture
Shared Priority System Editor
The name SPSE2 derives from Justin Coslor’s concept of
Priority Systems (Coslor 2008). Our goal system is straight-
forward, it has goals as nodes, unary predicates as condi-
tions, and binary predicates as edges. Here is related meta-

data from a sample goal in a planning domain. Suppose
<REL> is ("entry-fn" "pse" "38"):

("asserter" <REL> "unknown")
("goal" <REL>)
("has-NL" <REL> "ICAPS 2011 Paper")
("has-source" <REL>
("entry-fn" "sayer-index" "806"))
("depends" <REL> ("entry-fn" "pse" "17"))
...

Goals are straightforwardly expressed in natural language,
and may be marked with a unary predicate (such as
complete, showstopper, deleted, cancelled, ridiculous,
obsoleted, rejected, andskipped), or by a binary predicate
(such asdepends, provides, easesandprefer). SPSE2 is
used to develop the planning domain, stored in a FreeKBS2
context (equivalent more or less to CYC’s microtheories).
The SPSE2 planning domain is converted to a domain
usable by Verber, which then generates a PDDL domain.
Implementation of more complex models of the semantics of
processes is postponed until the basic system is completed.
Eventually, goals that are ongoing or recurrent (i.e. do the
laundry) should be modeled. For now, it only concerns
whether a given goal has been completed. The SPSE2 GUI
is being extended to become a knowledge editor, by adding
several additional often related node types and predicate
sets and background knowledge. There is also a domain for
general knowledge modeling. The GUI has special func-
tions for each domain. Domains under development include:

Alethic, Argumentation, CLEAR, Contexts, Critic, Deontic,
DiscourseRepresentation, Doxastic, Genealogy, Intelligent-
Agent, IntelligentTutoring, Inventory, Metamathematics,
NetworkMapper, PICForm, Planning, POSI, Social-
Networking, SuppositionalReasoner, Tactics, Temporal,
Workflow

FreeKBS2
Knowledge is stored in FreeKBS2. FreeKBS2 can convert
between several notations (KIF, Emacs and Perl Interlingua,
CycL, etc) and will eventually have more back-ends besides
the current Vampire-KIF back-end, enabling reasoning over
higher-order and modal logics. Vampire provides first-order
theorem proving with equality.

Verber
In order to generate a plan, SPSE2 translates its domain into
one usable by Verber. Verber, named after the late Senior
Chess Master Richard Verber, is basically a wrapper around
various PDDL planners. Verber provides a set of Perl mod-
ules for building and interacting with PDDL domains (and
hopefully other planning formalisms eventually) for call-
ing various planners and parsing the results. It also houses
a primitive knowledge engineering aspect for constructing
Verb format planning domain libraries tailored to the spe-
cific domains required in the project, such as movement dis-
cipline, goal tracking and meal planning. The Verb format is
a very lightly extended PDDL, which allows importing other



domains and problems and also a way to convert between
PDDL’s scalar time values and actual dates and times. Ide-
ally Verber is capable of observation, learning the average
and worst case durations of certain types of actions or events,
and incorporating this into the plan development. Currently,
there are several planners that are partially integrated, but so
far LPG-TD is used primarily (Gerevini, Saetti, and Serina
2004).

UniLang
The UniLang system is an interprocess communication sys-
tem for Perl “agents”. UniLang is loosely termed a mul-
tiagent system, patterned off of the Open Agent Architec-
ture, but without most of the Prolog-based communication
capabilities (although it does have a trivial FreeKBS2-based
knowledge interchange capability). Most agents, such as
FreeKBS2, Verber and SPSE2 main and temporary agents,
communicate with each other through theSendor Query-
Agent functions.

PSE
PSE stands for Planning, Scheduling and Execution. It is
one of the older FRDCSA planning systems. While the
original design using object-oriented Perl code has been re-
placed entirely with the PDDL-based approach through Ver-
ber, there remains a significant collection of Emacs Lisp
code within the namespace that works with the new Verber
model. Before SPSE2, Emacs was the primary way of in-
teracting with the planning system. Several interfaces were
developed for manipulation of goals. Significant to note are
the functions for rapidly asserting relations between goals.
A stack-based interface, similar to an RPN scientific calcula-
tor, exists for pushing textual entities under the Emacs point
onto the current stack, operating on the contents of the cur-
rent stack and ring of stacks, and asserting into FreeKBS2.
One such function will return the entry ID of the goal corre-
sponding to the text under the Emacs point. This interface is
still very much under development for the Natural Language
Understanding (NLU) system and the Knowledge-Max edi-
tor (KMax) systems, allowing semantic markup of text and
consequent rapid manipulation of symbolic, textual knowl-
edge.

System Interfaces
Calendar Synchronization
In order to improve the utility of Verber, a calendar syn-
chronization feature has been developed. This allows syn-
chronization with ICS Calendars or Google Calendars, the
ICS files for which are obtained and then translated into the
SPSE2 domain representation. In order to schedule an event
occurring at a certain time, it is translated from the date and
time information into the offset and scale of the scalar plan-
ning time value. The event start date is marked using PDDL
timed initial literals.
(at 1.00 (possible <EVENT>))
(at 2.00 (not (possible <EVENT>)))

Additionally the planning domain includes the following
precondition for the durative actionComplete.

(over all
(or
(not (has-time-constraints ?e1))
(possible ?e1)))

Here is an example of the time constraints that are asserted
by the DateTime interface.

("end-date"
("entry-fn" "pse" "38")
"TZID=America/Chicago:20101129T120000")

Notification Manager
A Perl/Tk-based notification manager patterned off of the
Android notification manager has been completed partially.
Ideally, it would be able to synchronize with the Android
notification manager. Certain tasks that regularly occur are
regularly added to the SPSE2 planning context by a cron
job. The custom cron-like format includes information on
how much warning time should predate the beginning of the
possibility of completing a task.

Figure 2: Notification Manager

Deontic and Teleologic Logics
It should be possible for users to place certain ethical con-
straints on possible actions, in order to provide their agents
with a moral decision support system. In support of this,
work is ongoing to formalize various systems of morality in
terms of deontic logics, and to provide an evaluation func-
tion which evaluates individual actions and plans against
various selected moral systems. Therefore, the user sim-
ply declares the moral systems to which they agree, and
the system then evaluates the actions. To illustrate a glar-
ing but simple example, let us consider the Ten Command-
ments, specifically the obligation that “Thou shalt not kill”.
If our computational semantics lacked understanding of gen-
eral prohibitions, perhaps this could be manually translated
to “Someone or something murdered”. This is then con-
verted to a logic form<LF> and it asserts:

(implies <LF> (rule-activated <RULE-NUMBER>))

It then determines whether this rule is activated using seman-
tic textual entailment recognition. The recognizer would
load the logic of the plan and all enumerable consequences,
convert to logic form, instantiate the variables with theirval-
uations, add contingent background knowledge, and query:
(rule-activated ?X), relaxing the lexical constraints



until a rule is activated. Of course, in practice this will be
more complicated (Balduccini, Baral, and Lierler 2007). Be-
sides considering general obligations and prohibitions (de-
ontics), it should also be useful to consider a means-ends
analysis (teleologics).

World State Comparison and Value Systems
An intended capability is to enable reasoning intelligently
about the value of a given plan or outcome. In trying to eval-
uate various actions to determine which are morally superior
according to various moral theories, it begs the question of
which world-states and histories are preferable. To evaluate
this, a general comparison function needs to be developed.
To reduce the evaluation to a total order would be somewhat
dualistic - but ultimately the user should be able to choose
preferable from among possible worlds - or rather provide
rules which in some sense order them.

Android Bluetooth Headset-Based Interactive
Execution Monitor

In order to provide a usable interface to the plans, an appli-
cation for the Google Android mobile operating system is
being developed for recording new goals, walking the user
through generated plans, and initiating replanning. Cur-
rently, a client-server system has been implemented that
communicates between the phone and server using XML-
RPC. This functionality actually resides within UniLang.
A limited set of voice commands has been developed, en-
abling the phone to for instance answer factoid-based ques-
tions using our agent wrapping the open source OpenEphyra
question answering system. Here is an illustrated use case
for this kind of question answering. The user initiates the
speech interface by pressing a certain combination of but-
tons on their Bluetooth headset, currently only the media
button. Recognition occurs using Google’s voice recog-
nition API, and results are then sent via XMLRPC to the
Android-FRDCSA-Server UniLang agent. The command is
processed by a VoiceCommand module, which in this use
case sends a query to the QUAC Question Answering sys-
tem, before ultimately returning the message.

Previously, a text-based interactive execution monitor was
deployed which used the Sphinx2 numeric domain and TTS
to query the user as to the status of the completed plan. Thus,
it is not hard to imagine adapting the current text-based in-
teractive execution manager to work on the Android phone.
Progress was delayed for months while the development
phone was broken, but thankfully another unit has been pro-
cured recently. Initiating communication to the phone, on
the other hand, while more difficult, may be accomplished
either through registering the phone with a dynamic-DNS
provider, or by polling from the phone to the server. Voice
commands for controlling the process of planning, replan-
ning and the interactive execution monitor will be devel-
oped. Development of the interactive execution monitor, es-
pecially one that incorporates conditional planning for vari-
ous possible interaction situations (such as whether the user
is in the presence of the phone or the computer), will be
more difficult.

Location Logic
Location Logic is a system for inferencing with the seman-
tics of logic related to the users’ physical locations as re-
ported by the GPS (or in the multiagent case using location
services like Google Latitude), as contrasted to their way-
point data. It works by asserting theorems observed regard-
ing the GPS tracks, such as whether certain waypoints are
being approached, visited, or departed. Location Logic in-
terfaces naturally with the SPSE2 system. Locational re-
strictions will be extracted from goals using named entity
recognition and computational semantics. Eventually, mul-
tiagent, distributed planning solvers should be integrated
which are able to resolve distributed resource problems.

Figure 3: Location Logic Prototype

Here is an example use case. Suppose both Alice and
Bob are using mobile phones having the hands-free voice-
controlled task list and Location Logic systems installed.
Both Alice and Bob are wearing Bluetooth headsets.

So suppose Alice is out of milk, but she doesn’t know
this right away. (Perhaps her roommate drank the last of it,
and did not or could not tell her yet). Meanwhile, Bob is
out running errands of his own. Alice wakes up and comes
down the stairs and goes to get some cereal. She pours the
bowl of cereal and then looks in her refrigerator. She re-
alizes that the milk is empty and has not been thrown out.
Disappointed, she taps a button on her Bluetooth headset. It
responds “Yes?”. Alice says: “pantry remove item milk”,
to which her headset responds, “Confirm remove milk from
pantry inventory?”. Alice says “yes” and the headset re-
sponds “Milk removed”.

When Alice tells the system that she was out of milk -
the system realizes according to various considerations that
she should buy some more milk. It therefore automatically
added the goal “get milk”. Because Alice and Bob are
friends, they have already told their Shared Priority Systems
that they can collaborate on several matters, one of which is
food inventory. Perhaps Alice’s planning agent sent a broad-



cast to all of her friends with which she shares this particu-
lar kind of information. It was stated simply as the goal
that there should be a fresh jug of milk in Alice’s refrigera-
tor. The various agents therefore add this goal to their own
planning systems. Collectively, at the next planning or re-
planning cycle, using a distributed planning formalism, they
agree on the details of the least costly and most preferable
plan that incorporates Alice’s request. Bob’s planning agent
and ethical analyzer agree to propose to Bob the task of pick-
ing up and dropping off milk to Alice’s house, because he
was approaching a grocery store, didn’t have other things
that couldn’t be slightly postponed, and his adjustable auton-
omy settings allowed for the proposal. Bob and perhaps Al-
ice get a message suggesting that this action be taken. Once
both have agreed, it is added to the planning system, even in-
cluding so much as to tell Bob’s cell phone agent which type
of milk Alice would like. Bob then purchases the milk and
then swings by Alice’s place on his way to work. For now,
assume Alice pays him cash - but in the future an automated
distributed loan/payment system will be used.

The usefulness of the milk provision scenario is debat-
able, but certainly in the general case such efficient team-
based collaboration would be very desirable, as for instance
in the case of ride-sharing, shared task management, and so
on.

Here is an example Location Logic rule.

(implies
(and
(leaving ?AGENT ?LOCATION)
(isa ?LOCATION movie-theatre)
(has-performed-action ?AGENT
"silence cell phone at movie theatres")
;; (> (sitting-still) (minute 1))
)

(perform-action "add-to-pending-tasks"
"unsilence cell phone \
when leaving movie theatres"))

Federated Transportation Planning
A federated transportation planning option, based on the
FRDCSA BusRoute planner1 has been integrated with Ver-
ber. However, with the advent of Google’s public transporta-
tion planner it will be replaced. This interface should natu-
rally understand waypoints, and be able to generate queries
to a public or private transportation routing system in order
to populate the planning domain with the timing constraints.
Ideally services transmitting actual bus positions and timing
could be integrated - and replanning initiated as needed.

Systems Using SPSE2/Verber/PSE
POSI Collaboration
The planning system and interactive execution monitor have
several applications. One related project using the tools of
the FRDCSA is the POSI Open Source Initiative (POSI)2. It
is a project for representing the goals, interests and abilities
of its users, as distilled from their writings and volunteered

1http://frdcsa.org/frdcsa/internal/busroute
2http://intranet.posi.frdcsa.org

information. The idea is to establish necessary and suffi-
cient information to form dynamic multiagent teams to solve
problems that are shared between multiple persons. Priority
Systems are essentially networks of goals and constraints
on these goals. Future versions of SPSE will be able to si-
multaneously edit the same Shared Priority Systems. Vari-
ous models of shared editing are under consideration. Ide-
ally, when someone marks a goal as completed, the other
SPSE agents should display such changes. An analogy can
be made to a real-time strategy game. An essential feature of
POSI is identifying when different users have specified the
same or related goals. This is accomplished chiefly using
the nascent technology of Textual Entailment Recognition,
as well as through breaking down individual goals into more
clearly defined or achievable steps. As such, the Goals, In-
terests and Abilities (GIAs) of the users are modeled using
ontological tools. SPSE2 itself soon will have the ability to
edit domains besides temporal planning, including different
ontologies such as the POSI ontologies.

Akahige Medical System

Another intended application is the Akahige Medical Sys-
tem 3. One capability of the Android phone-based general
purpose help system under development is to launch a medi-
cal help system in the event that any conspicuous symptoms
occur or at regularly scheduled times. Symptoms may be
run through a standard or custom medical diagnostic pro-
gram (such as Diagnosaurus or the planned Akahige Model-
Based Diagnostic and Fault Localization software). The re-
sult of the diagnostic procedure may require an emergency
response. In such a case, instructions for the given emer-
gency or situation will exist within the system and the user
will be guided by the interactive execution monitor to com-
plete these tasks, and to refer to documentation as needed.

Gourmet Meal Planner

Another area of significant interest is meal planning. The
FRDCSA project includes a meal planner, called Gourmet
4. It will interface with our inventory management compo-
nent for pantry management. The SOAR archive of around
150,000 meal-master recipes is being integrated. Work
is progressing on developing a foodstuffs ontology, upon
which to map the ingredients and intermediate foodstuffs of
recipes. Mapping to nutrient databases such as the SR23
and also to product databases such as UPCdatabase.com, in
addition to formalizing the recipe steps into discrete plan-
ning operations, will provide all the resources required to
achieve interactive recipe execution through the Android in-
terface. The formalization of recipe steps will hopefully
be attempted by training CMU’s StackedFrameParser on
the CURD/MILK dataset of annotated recipes. They use
a medium grained language called CURD which expresses
a set of abstracted operations on food and intermediate
foodstuffs (Tasse and Smith 2008). Then arbitrary English
recipes may be attempted. As some other open source meal

3http://frdcsa.org/frdcsa/internal/akahige
4http://frdcsa.org/frdcsa/internal/gourmet



planners have well established user bases, this automatic an-
notation could be performed and cached by a web server (as
the StackedFrameParser requires 8GB of RAM), and could
be augmented and trained by user corrections given a suffi-
cient GUI and upload mechanism.

Paperless-Office System
Another FRDCSA project that will make use of the plan-
ning technology is the Paperless-Office5. With this system,
which already functions to scan, OCR, search and edit doc-
uments, it will be possible to specify workflows - such as
certain documents requiring to be filled out and sent by cer-
tain times.

Figure 4: Paperless-Office

SystemX Intelligent Tutoring System
Work has been ongoing on Arbitrary Document Understand-
ing. Being able to represent the argument structure of a text,
and also the facts and relations of the text, enables the gen-
eration of temporal plans for teaching subjects at various
granularities based on various learning objectives and tim-
ing constraints. A prototype system called Study has been
developed6. SystemX will use the SPSE2 or its derivatives.

Conclusions and Future Work
Usable Perl/Tk, Emacs and Android systems for edit-
ing goals, adding temporal constraints, generating plans,
and walking the user through them are close to comple-
tion. The chief obstacle to the release of this work has
been its thorough dependence on the FRDCSA, a large
set of heavily interconnected yet unreleased software. A
proper requirements engineer process should be initiated (as
the project management for SPSE2 is currently performed
within SPSE2 itself - a chicken and egg problem). The com-
pletion of the Android interactive execution monitor is now
possible following the recent acquisition of a working An-
droid phone. As well, some pernicious bugs affect the FRD-
CSA notification manager.

5http://freshmeat.net/paperless-office
6http://frdcsa.org/frdcsa/internal/study

There are several other related topics that bear mention-
ing but that unfortunately time constraints have precluded.
This includes plan libraries (including some other previously
developed PDDL domains for personal tasks involving sev-
eral other predicates), ontological modeling, scripts andau-
tomatic execution of tasks, house rules, textual entailment,
computational semantics via logic forms, static domain anal-
ysis, reasoning with the consequences of failing to complete
certain tasks, automated goal analysis, an ontology of plan-
ning systems and their capabilities, plan cycles, and incor-
porating conformant and other plan types into the interactive
execution monitor. Here are some important areas for future
work.

Automatic PDDL Domain Construction Via
Computational Semantics
Although currently goals are simply evaluated in a boolean
context, a more detailed interpretation of the semantics of
the goals is planned. Ideally, it would convert the natural
language contents of goals and other node types into a log-
ical semantic representation, such as logic forms (LFs), and
from the LFs construct the PDDL domains and problems.

Suppositional Reasoner
The suppositional reasoner seeks to incorporate more posi-
tional evaluation and analysis of domain invariants, domain
specific knowledge and so on, into the planning process. It
ideally would function as a plan development and critiquing
interface for real-life problems, hopefully allowing the eval-
uation of any decision making process. It is being calibrated
on domains like Chess and Go that have a substantial lit-
erature that may be formalized and in which feedback on
efficacy is relatively short. From a search point of view, it is
not very interesting, for starters some standard search algo-
rithms should be implemented. But attempting to hybridize
the search with positional information is interesting. Anno-
tated chess games and their logic-based formalizations are
being used to develop knowledge that may be tested and ap-
plied to the situation. The Sayer system provides a method
for a kind of theorem proving over these domains and to
perform Natural Language Understanding (NLU) within the
project.

Temporal Conformant Planning
One desired capability is temporal conformant planning, and
tools for exploring the set of actions possible to the agent at
each state, and reasoning with the consequences of various
choices at that point. This naturally reflects back to the sup-
positional reasoner and the valuation system. This is per-
haps related to Conditional Temporal Planning (Tsamardi-
nos, Vidal, and Pollack 2003). Tools that implement these
techniques should be located and integrated.

Acknowledgments
I am grateful especially to Aloysius Flori and my immedi-
ate family who have been supportive of my work; to Justin
Coslor who has provided the inspiration for countless sys-
tems and programs and has developed a formal theory of



context; to the CMU community for its helpfulness; to Jim
Oberweis and the late Richard Verber for their support and
mentorship with chess; and to the many persons who showed
me kindnesses when they were under no obligation to do so.

I wish to thank all of the researchers who have or will
have provided references and pointers, those who have made
progress in this field, and in particular those who have re-
leased software, documentation and papers under freely re-
distributable or preferably FOSS licenses, such as the au-
thors of LPG-TD. Such licenses make the work of an open
source systems integrator much easier.

References
Balduccini, M.; Baral, C.; and Lierler, Y. 2007. Knowledge
representation and question answering. In Harmelen, V.;
Lifschitz; and Porter., eds.,Handbook of Knowledge Rep-
resentation. chapter 21.
Chaitin, G. J. 1974. Information-theoretic limitations of
formal systems.Journal of the ACM21:403–424.
Coslor, J. M. 2008.Possibility Thinking. Lulu.com.
Gerevini, A.; Saetti, A.; and Serina, I. 2004. LPG-TD:
a fully automated planner for PDDL2.2 domains.14th
Int. Conference on Automated Planning and Scheduling
(ICAPS-04).
Martin, C. 2006. Executive skills: How to improve your
ability to focus.
Tasse, D., and Smith, N. A. 2008. SOUR CREAM: To-
ward semantic processing of recipes. Technical Report 5,
Carnegie Mellon University, Pittsburgh, PA.
Tsamardinos, I.; Vidal, T.; and Pollack, M. 2003. CTP:
A new constraint-based formalism for conditional, temporal
planning.
Turing, A. 1939. Systems of logic based on ordinals. In
Proc. London Math. Soc., 161–228.


