The Free Life Planner (DRAFT)

Andrew Dougherty
FRDCSA Project
adougher9 @gmail.com

Abstract

The Free Life Planner aims to help any interested par-
ties with logistical support for daily living, although
it is targeted especially towards the disadvantaged (for
instance, those experiencing poverty, illness, disability
and/or homelessness). It helps to manage the affairs of
daily living, such as activities of daily living (ADLs),
executive skills, calendaring, recurrences, reminders,
planning, scheduling and execution. It further consists
of several integrated planning systems which handle fi-
nances, meals, transportation, short and long term life
planning, and so forth. It is hoped that a free/libre
application for this will reduce the strain on both so-
cial safety net systems and individuals using those sys-
tems, by improving the quality of planning. It has been
demonstrated that poverty causes a marked decrease in
executive functioning, and so a freely redistributable
and modifiable program that addresses this could help
to improve quality of life. It is accessible as an HTMLS
web-application via cell-phone, computer or tablet.

Introduction

This paper documents progress within the Formalized Re-
search Database; Cluster, Study and Apply (FRDCSA)
project (?) towards the development of the flagship Free
Life Planner (FLP) application.

A large pipeline for life rule acquisition has been cre-
ated, which locates via a web search spider materials ap-
plicable to the life planner, and catalogs them in a digital
library. Rules are mined, such as “Never get involved in a
land war in Asia”, and “Never go in against a Sicilian when
death is on the line”, and then translated using a custom tool
semi-automatically into Prolog. Using extensions from the
PrologMUD project, which contains a Free/Libre clone of
Cyc, the FLP is firmly rooted in knowledge-based systems
(KBS) and expert systems (ES) technologies. The system
runs using a bidirectional interface bewteen Perl and Pro-
log, with Perl providing a CMS and vast libraries of helper
functions, and Prolog handling many of the reasoning tasks.
Everything persists using the FreeKBS2 system to a MySQL
backend.

For an overview of the FRDCSA Project and the motiva-
tion for Free/Libre software development and conglomera-
tion, see (Dougherty 2018).

Motivation for the Free Life Planner

The Free Life Planner extends the FRDCSA thesis into the
space of life enhancement. This is desireable in and of itself
as well as a means to promote the development of the Al as
it will require a lot of work and being organized and efficient
is critical to the success of the endeavor.

The Free Life Planner aims to apply the vast corpus of
existing Al technologies to the last-mile delivery of software
services that promote social goods and enhance welfare.

The basic intuition is that it is possible to encode rules that
in practice govern real life into formats that are executable
and machine readable. Moreover, if this process of rule ac-
quisition can be expedited, it would be possible to encode
into the rulebase larger volumes of textual reference mate-
rial such as from books and papers than a person could hope
to read and/or retain. Then, when enaging in practical rea-
soning deliberation, potential actions could be proposed and
vetted on the basis of these rules, in this case faster and more
precisely than a person could.

Lately machine learning techniques like Deep Learning
have been demonstrating superhuman performance in vari-
ous tasks such as Go and DOTA2, demonstrating the feasi-
bility of algorithmic approaches to complex problems and
silencing critics of artificial intelligence. We do not take a
view that machine learning approaches are in competition
with rule-based systems, but rather in collaboration with
them. The FRDCSA umbrella project is inherently multi-
strategy and embraces all best-of-breed technologies. For
instance, we have experiment with GPGPU-based planning
systems.

What are Life Rules?

We take rules here to mean Prolog and PFC facts and rules.
So a rule can be a statement of fact that is used to make
inferences, such as for instance the nutrition content of a
particular food. It can also mean IF-THEN rules, such as .
Or it could mean forward chaining rules in PFC.
Here are some sample life rules:
done (pageRead (andrewDougherty,
pageNo (1, publicationFn (morbiniPhdThesis))))

Overview of the Free Life Planner Project

FLP consists of several parts; including a responsive
(mobile-friendly) web-based front end, an Amazon Alexa

voice interface, and an administrative backend which runs
from Emacs. The front-end employs the Perl Catalyst
Model/View/Controller (MVC) architecture, in particular,
the ShinyCMS Content Management System (CMS). Back-
end capabilities are provided by a bidirectional Perl to
Prolog interface based on Yaswi, a Perl module which
achieves this. Furthermore, the UniLang InterLingua and
the FreeKBS2 architecture implement a storage mechanism
which persists to a MySQL database.

System Architecture
PrologCYC Discipline

Psyclone is our project name for a prolog-based KBS sys-
tem that mirrors that of PrologCYC, a Free/Libre Prolog
reimplementation of CYC, part of the PrologMUD system .
Great advantages are conferred upon the FLP by making use
of the PrologCYC discipline. This mainly consists of KBS
technologies. For instance, it provides naming conventions,
microtheories, predicates delineating various properties of
other facts, rules and predicates.

Planners

Where possible, different domains are integrated into the in-
put files, and where not possible, we engage in factored plan-
ning.

ADL Planner
Financial Planner

The financial planner ? is based on a simplified planning do-
main (to be expanded upon in the future) which consists of
a promiseToPayFor function.

The financial planner is tailored for use with OPTIC-CLP
3, specifically using both paid and unpaid predicates to track
payment status in order to handle the lack of support for
negative preconditions. A desireable property of the finan-
cial planner is the ability to present a statement of projected
transactions. However calculating this could be complex
when the simplified domain is extended to handle things like
overdue payments. The VAL tool provides the ability to list
what the values of functions are after each step. However it
is difficult to correlate the information given the way VAL
handles temporal domains. So we convert from OPTIC-
CLP’s temporal plans to an abstracted sequential plan, and
then obtain the values for the fluents using VAL’s treatment
of sequential plans.

We recently demonstrated a 3-month financial forecast,
adding features which make it possible now to generate mul-
tiyear forecasts.

Given the speed at which plans are computed by the
OPTIC-CLP planner, it is possible to engage in contingency
planning. Since the promiseToPayFor functions are gener-
ated from specifications, it is possible to generate multiple

"https://github.com/TeamSPoon/prologmud
“https://github.com/aindilis/financial-planner
3https://nms.kcl.ac.uk/planning/software/optic.html
*https://nms kcl.ac.uk/planning/software/val.html

planning problems with slightly different constraints, in or-
der to engage in what-if scenario planning. For instance,
individual payments can be moved backwards or forwards
in time, eliminated or their amount changed, etc. At present
this is done manually, but in the future we have a subsystem
in development which makes common modifications, in or-
der to develop contingency plans in order to be prepared for
undesirable developments.

Whether a payment is late is not, when one has adequate
funds, generally a large issue, however, when cash-flow is
critical it can be arbitrarily destructive. This system helps to
tell you how long your current funds will last you, what you
can afford in the meantime while you wait for more funds,
and so on. This kind of information can be very useful in
tight financial situations, especially when decisions are un-
der time pressure. While it is generally not that hard to run
the numbers on one’s own, having the process automated al-
lows rapid recalculation, integration as a financial question-
answering into other planners, and helps highlight account-
ing mistakes.

Meal Planner

The meal planner ° is intimately connected with the inven-
tory manager. Once inventory levels have been accurately
assessed, it is possible to generate a meal plan. The meal
planner makes use of the LPG-td 1.0 planner ©. It is possible
to set preferences for the amount of different nutrients, for
example:

(at end
(<= (intake saturated_fat grams ?agent)
20.0))

Transportation Planner
Short and Long Term Life Planner
Calendaring

FLP comes with a range of calendaring features, including
calendar entries and recurrences.

Acknowledgments

I am grateful especially to Meredith McGhan for pushing
forward the development of the Free Life Planner, to Dou-
glas Miles for countless assistance on the Prolog and Pro-
logMUD dimension of the FLP, to Justin Coslor for inspira-
tion and financial assistance, to Jess Balint for his financial
assistance and software development assistance, and to my
mother for her patience and support as I pursued the multi-
year long development process.

References

Dougherty, A. J. 2011. Temporal planning and inferencing
for personal task management with SPSE2.

Dougherty, A. J. 2018. The FRDCSA project.

Shttps:/frdcsa.org/ andrewdo/WebWiki/MealPlannerUpdate.htm]

®http://zeus.ing.unibs.it/lpg/

Gerevini, A.; Saetti, A.; and Serina, I. 2004. LPG-TD:
a fully automated planner for PDDL2.2 domains. [4th
Int. Conference on Automated Planning and Scheduling
(ICAPS-04).

Howey, R., and Long, D. 2003. VAL’s progress: The au-
tomatic validation tool for pddI2.1 used in the international
planning competition journal. in Proceedings of the ICAPS
2003 workshop on “The Competition: Impact, Organiza-
tion, Evaluation, Benchmarks” .

