
The FRDCSA Project (DRAFT)

Andrew Dougherty
FRDCSA Project

adougher9@gmail.com

Abstract

The Formalized Research Database: Cluster, Study and
Apply project (FRDCSA) is an attempt to create a weak
AI by collecting and enhancing Free/Libre software.
Based on results in Algorithmic Information Theory
(AIT), it establishes some constraints that apply to se-
quences of increasingly powerful programs, namely,
that increased program size is ultimately a necessary
but insufficient condition for increased capabilities. The
easiest method of increasing program size is to collect
and package existing Free/Libre software. There are
many important software systems which have not al-
ready been packaged. Many strategies are used to man-
age the collection, integration and application of exist-
ing software. There are nearly 2000 systems which have
been manually collected, in lieu of the automated spi-
dering systems we are developing. However, packaging
external code is not sufficient to resolve all encountered
problems, so an expansive programme of software de-
velopment has been implemented creating a library of
programs that glue the rest of the functionality together.
This consists of over 2400 Perl modules, 440 Prolog
files and 600 internal and minor projects, with more ex-
pected. Seemingly paradoxically, the creation of more
and more projects and software, rather than spreading
the project too thin, actually speeds up the completion
of major milestones because the added functionality im-
proves the capabilities of the system, creates informa-
tion fusion, and reduces the distance required to achieve
the project goals.

Introduction

This paper documents the motivation for and progress of the
Formalized Research Database; Cluster, Study and Apply
(FRDCSA) project (Dougherty 2011) towards advancing the
capabilities of software systems through development of a
system for collecting and redistributing software.

Motivation for Free/Libre Software Development

In order to establish the motivation for the FRDCSA project,
we must look at the motivation for Free/Libre software de-
velopment. There are a few key concepts which work in fa-
vor of the present design of the FRDCSA. Due to the unique
topological properties of information, it is possible to make
copies of software ad infinitum with near-zero additional

cost per copy, a.k.a. software has the Zero Marginal Cost
property (ZMC). This means that, once developed, anyone
can have a copy at no additional (marginal) cost. Another
important concept is that of rivalry. Many resources are ri-
valrous, such as, for instance, an apple. Consumption of an
apple prevents others from consuming that apple. However,
information by itself is nonrivalrous, consuming the infor-
mation does not in general prevent others from consuming
the information. Free/Libre software is therefore nonrival-
rous. Using Free/Libre software does not in general prevent
others from using it. This has the same effect - once devel-
oped, anyone can have a copy at no additional cost. Lastly,
according to the licensing, the entire system of Free/Libre
software behaves as one closed system. What you add in
one place to the system is practically speaking able to be
accessed instantly from another place in the system, and fur-
thermore there is no more or less software available than
what is added to the system.

Given that Free/Libre software has the properties of be-
ing ZMC, nonrivalrous, and a closed system, it means that
it is possible to achieve post-scarcity for software, provided
people are able to contribute software to the system. Be-
cause software has the ability to solve problems which im-
pede quality of life and to allieviate suffering, owing to the
special agency which it possesses, it would seem especially
desirable to contribute to this system. As Eben Moglen so
poignantly stated: “The great moral question of the twenty-
first century is this: if all knowledge, all culture, all art, all
useful information can be costlessly given to everyone at the
same price that it is given to anyone; if everyone can have
everything, anywhere, all the time, why is it ever moral to
exclude anyone?” (Moglen 2001)

Additionally, software systems possess a peculiar kind of
immortality. Whereas people today have a life expectancy
generally under 100 years, there is no predefined life ex-
pectancy for software. It may persist, like books, for thou-
sands of years or more. Therefore, whatever acumen it pos-
sesses can be continually improved, and proven through re-
gression testing. This means that personal assistants of the
future have the ability to retain constantly increasing quan-
tities of knowledge and abilities. Their knowledge does not
repeatedly die off with each subsequent generation.

Moreover, extreme rates of technological progression
have not been limited to the software field. In tandem, com-

puter hardware has been developing at an accelerated pace.
So not only is software able to solve increasingly difficult
problems, but it is able to do so faster and faster.

But software post-scarcity would be useless without hard-
ware post-scarcity. Fortunately, computer technology has
become commodified to the point that one can purchase
brand new a usable desktop computer, the Raspberry Pi Zero
W, for as little as $3.14. Although an extreme example,
the price of computers generally has fallen drastically, even
more so if you count the various embedded devices, like TV
boxes.

Given these three architectural properties of Free/Libre
software: ZMC, nonrivalry and being a closed system, com-
bined with the low cost of modern computers, the oppor-
tunity afforded through the creation of Free/Libre software
that can solve significant societal problems is too great to
ignore. The ability to service everyone through the creation
of a single system compounds and magnifies the motivation
to do so.

There is of course one major catch, and that is, the soft-
ware can become available to anyone at the same price as
it available for anyone. Once written, anyone may have it.
But it still needs to be written. Funding the development of
Free/Libre software has been an issue, just as coordinating
contributors.

Motivation for Conglomerating Software

Given the force-multiplication that one achieves through
Free/Libre software for the aforementioned reasons, we con-
tend that it is imperative to advance the capabilities of the
Free/Libre software as far as practical. The question then
becomes how does one achieve this?

The first and major goal of the FRDCSA project, 18 years
and running, has been to help to advance the capabilities of
Free/Libre software in order to help provide for better se-
curity and quality of life for all living creatures. A major
assumption, of course, is that FLOSS artificial intelligence,
engineered correctly and with unlimited redistribution, sat-
isfices this goal. To avoid polemics, the project is con-
cerned only with implementing a restricted form of weak AI.
The approach, motivated by algorithmic information the-
ory and information-theoretic computational complexity of
metamathematics, has two prongs - to develop an increas-
ingly complete theorem proving system and library (called
Formalized Research Database (FRD)), and to develop an
increasingly complete collection of practical software (Clus-
ter, Study and Apply (CSA)).

The Curry-Howard isomorphism establishes a correspon-
dence between programs and proof systems, such that theo-
retical results applying to each are transferrable to the other.
Progress thus moves along what has been described as a dual
track of theory and practice.

Thus, the FRD (Formalized Research Database), which
corresponds to the theorem proving side of the Curry-
Howard Isomorphism, constitutes what is referred to in the
post-Gödel era as a relativized or reformed Hilbert’s pro-
gram. The FRD can never be fully completed, but can, by
engineering a sequence of iterated Gödelian extensions of
logic - each more complete than the previous - decide in

the limit all problems of arithmetic (that are not absolutely
undecidable). The idea was to the author’s knowledge first
described in Alan Turing’s inaccessible 1939 thesis, that of
creating a sequence of logics, each more complete than the
previous, based upon the assumption of the existence of in-
creasingly large constructible ordinals (Turing 1939). An-
other account (Franzén 2004) goes further to suggest that
every for all arithmetic propositions there exists some iter-
ated Gödelian extension that decides it, that is, by repeated
addition of an axiom stating the consistency of the previous
axiomatic system.

The CSA (Cluster, Study and Apply), which correspond-
ing the program side of the Curry-Howard Isomorphism,
consists of a set of programs for building and packaging
most or all known freely available software systems and
datasets. It is characterized by an advanced system of soft-
ware location, acquisition, analysis, building and packaging,
and redistributing.

Together, the FRDCSA attempts to improve the solution
space of programming systems by the collection and inte-
gration of a wide variety of applicable tools. Engineering
the FRDCSA can be likened to creating a tool shop, with
the intuition that it is provident to collect and prepare tools
for use before problems are encountered, thus sparing the
possible failure of a last-minute search for the proper tool
under time pressure.

Effectiveness of the Solution Concept

Let us go into more detail about why this solution concept is
effective. How does one in general improve the capabilities
of software systems? Gödel’s second incompleteness theo-
rem effectively rules out a single program as being sufficient
for “Artificial Intelligence”. There will always be problems
that it cannot solve.

Moreover, Chaitin further established that the scope of in-
completeness, rather than be limited to a few propositions
such as self-consistency, it was a pervasive limitation. He
did this using Algorithmic Information Theory (AIT). Basi-
cally, he showed that “there are circumstances in which one
only gets out of a set of axioms what one puts in, and in
which it is possible to reason in the following manner. If a
set of theorems constitutes t bits of information, and a set
of axioms contains less than t bits of information, then it
is impossible to deduce these theorems from these axioms.”
(Chaitin 1974).

Proof of Solution Concept To demonstate this, let TR be
the set of all total-recursive functions, and let PR be the set
of all partial-recursive functions. Let S be an undecidable
logic, and let LS be the class of formulae in the language
of S. Let G be a partial-recursive bijection from formulae
in LS to integers, i.e. G ∈ PR ∧ G : LS 7→ N , and let
Th(S) be the set of true formula in L, i.e. φ : S |= φ. Let
GTh(S,G) be the Gödel numbers of valid formula in S, i.e.
G(φ) : φ ∈ Th(S). Let Enum(p ∈ TR,C) be the set
of integers which are enumerated by the function p, and let
Len(p) be the number of symbols in the definition of p. Let
the Kolmogorov complexity, K(p ∈ TR,C), be the size of
the smallest recursive function that enumerates the same in-

teger sequence as p, i.e. µ.len(q)(q ∈ TR∧Enum(q, U) =
Enum(p, C)).

Definition 0.1. We say p is larger than q iff K(p, C) >
K(q, C), written Larger(p, q).

Further, let D(p, S, LS , G, C) be G(φ) : (φ ∈ LS∧
G(φ) ∈ Enum(p, C)⊕G(¬φ) ∈ Enum(p, C)).

Definition 0.2. We say p is stronger than q iff
D(q, S, LS , G, C) ∩ GTh(S,G) ⊂ D(p, S, LS , G, C) ∩
GTh(S,G)), written Stronger(p, q).

Theorem 1. For any program p, there exists another pro-
gram q which is both larger (Kolmogorov-complexity wise)
and stronger (proof-theoretically), i.e. ∀p ∈ TR(∃q ∈
TR(Larger(q, p) ∧ Stronger(q, p)))

Proof. By construction: the theory S is undecidable, there-
fore no program exists which enumerates GTh(S). Hence
there exists some φ ∈ Th(S) such that p does not enumerate
it. Then there must exist a program q which enumerates {φ}
and Enum(p, C), since the union of two enumerable sets
is also enumerable. Hence Stronger(q, p). Enum(p, C)
can further be padded by some finite subset of GTh(S) if
necessary to ensure Larger(q, p).

Theorem 2. It is not the case that for any program
p, there exists another program q which is stronger
(proof-theoretically) but not larger (Kolmogorov-complexity
wise), i.e. ¬∀p ∈ TR(∃q ∈ TR(¬Larger(q, p) ∧
Stronger(q, p)))

Proof. For any p ∈ TR, there are only finitely many pro-
grams of length less than or equal to K(p, C). Let L be the
set of the finitely many distinct sets enumerated by programs
of length less than or equal to K(p, C). ∃l ∈ L(¬∃m ∈
L(l ⊂ m)). In other words, l is a maximal set w.r.t. set
inclusion. Let p′ be a smallest program that enumerates
l. K(p, C) = K(p′, C). Therefore, no program exists of
less than or equal in length to K(p′, C) that enumerates a
proper superset of l, i.e. ¬∃q ∈ TR(Stronger(q, p′) ∨
¬Larger(q, p′)).

This shows that a necessary but insufficient condition for
increased abilities is that program lengths of any infinite se-
quence of increasingly powerful programs is bounded below
by some monotonic increasing function. Unfortunately, this
holds true for any infinite sequence of programs. Proving
stronger constraints is one aim of the project.

Refutation of Static Seed AI I will mention in passing the
concept of seed AI. The concept of seed AI has often been
used to argue against the FRDCSA thesis, suggesting that
it is unnecessary to collect software, and so therefore it de-
serves mentioning why seed AI is not sufficient to achieve
an endlessly self-improving AI. Seed AI is the idea that there
is some program which rewrites itself such that it is able to
improves its problem-solving abilities, and it does so ad in-
finitum, continually rewriting itself and solving more prob-
lems. Let static seed AI denote a program without external
input:

Theorem 3. Static seed AI, the idea that a program can
rewrite itself to solve an ever increasing set of problems, is
a transitive closure violation.

Proof. Suppose that a static seed AI, program p, cannot de-
cide φ, but p then rewrites itself into q which decides φ.
Then, program p has decided φ, contradiction.

Combined with Chaitin’s result it is clear that there is
an information-theoretic limitation preventing this concept
from succeeding.

Let dynamic seed AI denote a total-recursive function
with external input. For instance, a web spider which reads
books and papers. The author is not aware of any results
regarding dynamic seed AI, but has a vague intuition that
a relativized version of the same transitive closure violation
exists. However, it is important to rule this out.

Another related concept which might be confused with
static seed AI is that of Gödel Machines. These are systems
that rewrite themselves whenever they can prove that their
modifications improve the efficiency or expand the current
(not potential) proof-theoretic closure of the program. How-
ever the theory of Gödel Machines does not suppose that
they will exceed their transitive closure.

Another common misconception is that the FRDCSA is
impossible due to Gödel’s second incompleteness theorem.
But it is precisely this theorem which is the cornerstone of
the project.

Overview of Collection Projects

ByteLibrary The ByteLibrary project is just the latest in-
carnation of the central project goal of increasing software
complexity through the collection and interrelation of ex-
isting software combined with the development of special
purpose software to harness the collected software.

ByteLibrary is a website where users may submit what we
call metasites. These are sites which contain lists of projects
or programs. Many such sites exist on the web. Often they
are found on academic research websites. They might con-
tain a long list of the programs that have been implemented.

Someone once asked, “what are you going to do with all
these programs you’ve collected?” The relevant point is that
there was some need, some problem, which drove the au-
thors to write their programs. They wrote it because what-
ever tools they originally possessed did not adequately do
the job. Therefore, we would like to identify and record
whatever motivation the author had in writing their soft-
ware. Ideally with a formal definition, but an English gloss
can contribute meaningful information to the system, for in-
stance, doing keyword or terminological extraction. We col-
lect the software, and then prepare a wrapper that allows us
to export problems to the solvers and return the answer to
our system, creating what might be thought of as a black-
board architecture of solver agents. By indexing the soft-
ware, and the problems it purports to solve, establishing a
matchmaker service no doubt powered by additional soft-
ware we collect and/or write, we can increase our solution
space.

The ByteLibrary system takes the metasite list, and re-
quests that curators approve and reject each particular URL
as containing information relevant to their curation goals.
Sites deemed relevant to at least one curator are then auto-
matically crawled using a focused crawler which searches a
few links deep for urls that appear to contain software. The
entire list of sites, site summaries, and software URLs is then
presented to the user. If there is version information a tech-
nique is applied which selects the latest version of the soft-
ware, since at present our storage space is not large enough
to accomodate all versions of software, although that would
be a desirable future goal.

The system then proceeds to add the software, datasets
and related information that the user selected into a down-
load queue. Software is then downloaded to the storage and
is indexed into the system. At some future point it will be
packaged for the system. This is because until it is packaged
the capabilities remain outside of convenient access for non-
expert users who might lack the know-how to properly build
and install the software. By having a computer or a human-
computer team package the software, we reduce the amount
of effort spent on packaging the software from N packages
times M users to simply N packages times O packaging sys-
tems. This is further reduced by tools like Alien which trans-
late between package formats.

Other Notable FRDCSA Systems

The Free Life Planner The Free Life Planner is the flag-
ship application of the FRDCSA Project. It is designed to
provide for personal life planning, especially targeted to-
wards the disadvantaged. More information is available
from (Dougherty 2018) and (Dougherty 2011).

Acknowledgments

I am grateful to Justin Coslor for providing several large
hard drives to build ByteLibrary. I am further grateful to
Jess Balint for financial support of the project, and for soft-
ware contributions such as the UniLang Java Client which
enabled Alexa integration. As well as Douglas Miles who
has contributed large swaths of code and invaluable assis-
tance with Prolog for various aspects of the project. Addi-
tionally to my fiancee and my future mother in law for their
encouragement and support and my mother for her support
throughout the years of this project.

I further wish to thank all of the researchers who have or
will have provided references and pointers, those who have
made progress in this field, and in particular those who have
released software, documentation and papers under freely
redistributable or preferably FLOSS licenses, such as the au-
thors of OPTIC. Such licenses make the work of an open
source systems integrator much easier.

References

Chaitin, G. J. 1974. Information-theoretic limitations of
formal systems. Journal of the ACM 21:403–424.

Dougherty, A. J. 2011. Temporal planning and inferencing
for personal task management with spse2.

Dougherty, A. J. 2018. The free life planner.

Franzén, T. 2004. Transfinite progressions: A second look
at completeness. The Bulletin of Symbol Logic 10(3).

Moglen, E. 2001. The dot communist manifesto: How cul-
ture became property and what we’re going to do about it.

Turing, A. 1939. Systems of logic based on ordinals. In
Proc. London Math. Soc., 161–228.

