
Project: Mathematical Knowledge Management 
 
Participants: imode, stoopkid, dmiles, aindilis, b3nszy 
 
Abstract:  
 
MKM seeks to formalize mathematical knowledge with CYC. 
 
Use Cases: 
 
Automated Theorem Proving, Intelligent Tutoring Systems,  
Generalized Program Synthesis and Analysis. 

● with security/complexity guarantees 
● hardware (hypothetically) 
● machine languages 
● higher level languages 
● MKM language itself (i.e. Godelization) 

Routing over transitive relations, like equality, implication 
● data-format translation as a networking problem 

Crowd-sourcing code with guarantees 
Semantics for semantic web & semantic wiki 
Open-source governance (representing the semantics of it) 
“World-building” 
 
 
Resources: 
https://pastebin.com/A8Rbm7Cv 
https://frdcsa.org/frdcsa/internal/perform/ 
 
 
stoopkid’s current stack of choice: 
some of these layers are potentially overlapping 
some of these layers may be able to be smashed together entirely 

1. machines & machine languages 
2. generic rewriting engine 
3. generic deductive engine (i.e. prolog, CYC, etc..) 

a. write the rules for your foundation of math 
b. untyped lambda calculus as theorem-proving framework 

i. inconsistent 
c. simple type theory 
d. polymorphic type theory 
e. dependent type theory 
f. homotopy type theory 

https://pastebin.com/A8Rbm7Cv
https://frdcsa.org/frdcsa/internal/perform/


g. modal logic 
h. pure type systems 

4. consistent foundation for math, as database (ideally constructive; i.e. dependent type 
theory, homotopy type theory) 

a. fixed & finite / finitely-expressible rule/axiom set / schema-set 
b. good feature to have: has executable constructive proof, via proof-simplification 

derived from logical harmony conditions on introduction/elimination rule-set pairs 
i. note: non-termination of execution via proof-simplification is problematic if 

allowed without restriction, but this does not necessarily mean it cannot 
be allowed. the problems it causes are: 

1. causing dependent type-checking to fail to terminate 
2. conflicting with some assumed finiteness of the terms implied by 

the rest of the rules, example: 
a. if you can prove that there’s no Nat x such that x + 1 = x, 

then if you can define a term badNat = badNat + 1, then 
you’re gonna have a problem 

3. confer: data vs. codata 
c. necessary feature to have: has proofs about executables 

i. possibly via proofs about its proofs, as in the case of (a), as they are 
executable 

ii. proofs about models of other execution environments; can model and 
prove things about Turing-complete computing systems 

1. note: if it has executable proofs as in the case of (a), they do not 
need to be Turing-complete or even allow any non-termination in 
order to achieve this  

iii. self-representation, i.e. Godelization 
d. proof-checking must terminate, ideally with low complexity except for when the 

user specifically directs the proof-checking to run some function of potentially 
arbitrary complexity 

e. name-spaces; module system 
f. version-control? 

5. mathematical proof 
a. results about pure structure 
b. 2 + 2 = 4 
c. addition is commutative 
d. “exists injection/surjection” is transitive 
e. function composition is associative 
f. functions respect equality 
g. functions distribute over the components of an if-then-else statement 
h. every regular language corresponds to a regular expression and a finite state 

machine 
i. abstract algebra 

6. “world-building” as “rules under hypothesis” 



a. basically defining your world as abstract algebraic structures 
i. Groups/Rings/Fields/Monoids can be seen as being types of worlds 
ii. in dependent type theory their structure and properties can be expressed 

as the field-types in a record type 
iii. you ask whether there actually exist such worlds, i.e. whether the laws 

defining the abstract algebraic structure are satisfiable or not 
iv. in constructive logic, any such proof of satisfiability would essentially be 

an instance of the abstract algebraic structure in question, i.e. a proof of 
satisfiability of the Group laws would be an actual Group (i.e. a set with a 
binary operation) paired with everything necessary to interface with the 
properties specified by the Group laws (i.e. having identity element, 
inverses, associativity, totality) 

v. in other words, the proofs are (or contain) machine-interpretable models 
in the sense of model theory 

1. universal algebra + logic = model theory. 
2. https://en.wikipedia.org/wiki/Model_theory 

vi. now generalize this to essentially arbitrary kinds of constraints, i.e. be 
extremely liberal with what kind of abstract algebraic structures you’re 
considering: 

1. Example: 
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.
agda#L96 
 
Yes this is an abstract algebraic datatype 
Any instance of it happens to satisfy this property: 
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.
agda#L158 
 

2. “prolog in record types” / “prolog under hypothesis” 
 

b. real-world knowledge modeling 
c. machine modeling 

i. hardware logic verification 
d. language modeling 

i. C/C++ language specifications 
ii. RDF specifications 
iii. English 

e. scientific modeling; perfect example of why we would place the world-building 
layer under hypothesis of the actual mathematical framework rather than allowing 
proliferation of rules attempting to express real-world concepts being taken as 
“truth”: 

i. Newtonian mechanics? 
ii. Relativity? 

https://en.wikipedia.org/wiki/Universal_algebra
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Model_theory
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L96
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L96
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L158
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L158


iii. Some kind of quantum gravity string theory? 
iv. Biocentric universe theory?? 
v. Flat-earth theory?!?!? 

f. constraint specification / “specification specification” 
i. “this program must satisfy such and such properties” 

g. self-representation i.e. Godelization 
i. note: the fact that a Godelization actually corresponds to the formal 

system we’re working in, and the results based on this, exist in the 
metatheory, which from the perspective of the formal system might as 
well be out in the inaccessible “real world” 

ii. self-compilation 
7. personal knowledge-base 
8. networking 

a. semantic web 
b. crowd-sourced logic & code 

i. with guarantees up to whatever constraints are specified in the types it’s 
annotated with 

c. packaging and distribution management 
9. inferencing engines 

a. automate reasoning over the knowledge-base below this layer 
b. can apply essentially arbitrary methods; proof-checking guarantees you will never 

put anything into the system that breaks consistency 
i. neural net that learns how to prove things? 

1. using proof-checker as a free “trainer”/validator? 
2. derive training sets from problems we actually want to solve? 

10. interface 
a. accessible proof-tactics framework 
b. immersive environment (like a semantic wiki) 
c. like wikidata but dependently typed 
d. LATEX support 
e. wolfram / mathematica / etc.. 

11. execution of general non-terminating algorithms / Turing-completeness recovered 
(again) as infinite sequence of user-interactions, doing one terminating step at a time 

a. where a “user” is any physical thing that can perform the interactions 
b. can describe the individual steps of an arbitrary Turing-machine 

i. just need something to keep pushing the “step” button 
 
 

 
 
 
 
 



 
 

+ Andrew’s use cases: 
 
I am interested in the A.I. as theorem proving paradigm.  I proved a (trivial?) result that shows 
that in order to increase the deductive closure of theorem proving systems it is ultimately 
necessary that the theorem proving program increase in size: 
  
https://frdcsa.org/frdcsa/introduction/writeup.txt 
 
So my goal is to create a substratum upon which we can have a lot of solvers for different 
theorem proving and related computational tasks.  Due to Curry Howard we have that theorem 
provers are programs.  So I collect programs in the hopes that some of them will increase the 
deductive closure.  (Collecting software is the quickest means to augment your system with 
most likely meaningful complexity).  For instance, I recently started packaging for Debian 
GNU+Linux about 180 more software systems found here:  
 
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md 
 
So far I’ve made 256 packages of various AI systems, but my intention is to scale that to the 
hundreds of thousands, noting that the AI effect means that AI really is a designation for the 
unsolved problems in fields, and that what is and isn’t AI software forms a spectrum. 
 
I take the approach that whenever a person has a problem of any sort, they enter that into the 
intake part of the system.  The system then works to solve as many of these problems as it can, 
with emphasis on those problems whose solutions go on to solve other problems for more 
people. 
 
One of my projects is the Textbook Knowledge Formation project, which seeks to translate 
textbooks semi-automatically into CYC or Prolog.  (see https://github.com/aindilis/nlu-mf).  It is 
similar to RKF and a project from AI2, probably Vulcan or something.  The goal here is to 
translate all literature, not just mathematical, but I’m using mathematical literature to bootstrap 
the process because of the affinity between mathematics and CS KBS systems. 
 
I have over 600 internal projects that serve to glue the external code together, Glue AI I think 
I’ve heard it termed by dmiles.  (see https://frdcsa.org/frdcsa/internal and 
https://frdcsa.org/frdcsa/minor). 
 
So some more specific use cases: program synthesis.  It should be possible to create an 
intelligent agent which debates how to implement solutions to various algorithmic problems.  For 
instance, sorting has implementations like quicksort, etc.  So for a given problem definition, the 
software should be able to use its mathematical knowledge to rule out certain approaches to the 
problem, and to help guide the search for the algorithmic solution. 

https://frdcsa.org/frdcsa/introduction/writeup.txt
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md
https://github.com/aindilis/nlu-mf
https://frdcsa.org/frdcsa/internal
https://frdcsa.org/frdcsa/minor


 
I believe that the totality of mathematics/logic/CS (as well as the rest of human knowledge) 
cannot fit into one brain, but it can fit into a digital mind that lacks conventional mortality, and 
that creating such a digital mind is the paramount occupation of our time. 
 
MKM can not only aid in theorem proving but also with pedagogy, and help to answer questions 
directly wrt mathematical knowledge for people who are learning or relearning respective areas 
of mathematics/CS. 
 
 

 
Description of type theory 
 
 
4 kinds of rules define a data-type: 
Type-formation 
Introduction 
Elimination 
Computation 
 
*note: the type-formation rules can potentially be seen as introduction rules for types 
 
 
 
1. Type-formation rules tell you when the data-type or instance of the logical connective even 
exists in the first place, like Nat is just defined to be a type, and List A is a type iff. A is a type, 
A AND B is a type iff. A and B are types 
 
2. Introduction rules tell you what objects you have in the type; equivalently, since types are 
propositions and more specifically are the types of the proofs of those propositions, the 
introduction rules tell you what counts as a proof of the proposition. Example, 
  zero : Nat 
  suc n : Nat,  if n : Nat 
 
 
3. Elimination rules for a type/connective tell you what you can derive from an object in that 
type / proof of an instance of that connective. This allows you to provide proofs of universal 
quantifications over that type by (possibly recursively) case-matching on the introduction rules, 
which essentially corresponds to proofs-by-induction. Example: 
  f : forall (n : Nat) , P n 
  f zero = zero-case 
  f (suc n) = f-induction n (f n) 



    where 
     f-induction : (n : Nat) → P n → P (suc n) 

 
4. Computation rules for a type/connective give you: 
  * Computation, of course 
  * Proof-simplification 
  * The actual rewrite relation on terms 
  * The primitive (and computably & deterministically traversable) equality relation on terms 
 
Example:  
  
 
 
Only the type-formation and the introduction rules need to be provided and the elimination and 
computation rules can be derived in a standard fashion in order to satisfy what are called 
“logical harmony conditions”. In fact we can provide a unified presentation of (almost) all the 
standard types, which is what will be presented here. 
 
 
Let R be the type (or parameterized/indexed) type-family being defined. 
 
Γ  and Δ represent sequences of typing judgements (a : A) such that the types in later 
judgements in the sequence can depend on terms in earlier values in the sequence, as in “(n : 
Nat), (m : Fin n)” 
 
γ and δ represent the term-variables in these sequences, i.e. “n, m” in the previous example. 
 
Let b[x\a] mean “substitute x for a in b” 
Let {δ}.c mean  δ is a sequence of term-variables contained in the term c. 
 
 
 
 
Standard data-type declaration syntax: 
 
data R (γ : Γ) : Δ → Set where 
 intro1 : (δ1 : Δ1) → R γ (v1 γ δ1) 
 ... 
 intron : (δn : Δn) → R γ (vn γ δn) 
  
where, vᵢ : Γ → Δi → Δ 
and Δi strictly positive occurrences of R _? _? 
 



 
Example: 
data Vector (A : Set) : Nat → Set where 
 intro1 : Vector A zero 
 intro2 : {n : Nat} → (a : A) → (v : Vector A n) → Vector A (suc n) 
 
v1 : Set → Nat 
v1 A = zero 
 
v2 : (A : Set)(n : Nat)(a : A)(v : Vector A n) → Nat 
v2 A n a v = suc n 
 
 
 
 
 
Represented as natural deduction rules: 
 
 
Type formation rules 
 
 
G |- γ : Γ 
-------------------- 
G, δ : Δ |- R γ δ : Set 
 
 
 
 
Introduction rules 
 
 
G |- R γ δ : Set   
G |- p : Δi   
G |- (vi γ p) : Δ 
------------------------------------------ intro1 
G |- R-intro1 p : R γ δ 
 
... 
 
G |- R γ δ : Set           G |- p : Δ� 
------------------------------------------ introN 
G |- R-introN p : R γ δ 



  
 
Elimination rules 
 
G |- p : R γ δ  
G, x : R γ δ |- C : Set  
G, δ1 : Δ1 ,  : Γ1 |- c1 : C[x\(intro1 δ1)] 
... 
G, δ1 : Δn ,  : Γn |- cn : C[x\(intron δn)] 
----------------------------------------------- elim 
G |- R-elim p {δ1 , γ1 }.c1 ... {δn , γn}.cn : C[x\p] 
 
Where  
Γi = { (R-elim q {δ₁}.c₁ ... {δ�}.c� : C[x\q]) | (q : R γ δ) in Δᵢ} 
 
This is how we get structural induction on the terms in R γ δ. 
  
 
 
 
Computation rules 
G |- R-elim (introᵢ α) {δ₁}.c₁ ... {δ�}.c� : C 
---------------------------------------------------------------- comp 
G |- R-elim (introᵢ α) {δ₁}.c₁ ... {δ�}.c� = cᵢ[δᵢ\α] : C 
  
 
Related info: 
A Tutorial on the Curry Howard Correspondence: 
http://purelytheoretical.com/papers/ATCHC.pdf 
Logical harmony conditions 
W types and M-types 
F-algebras and F-coalgebras 
Initiality and finality 
Negative and positive types 
https://cs.stackexchange.com/questions/55646/strict-positivity 
 
Difference between parameters and indices 
Induction-recursion, induction-induction, and higher-inductive types 
Refinement types? (“set-builder subtyping”) 
Univalence? 
 
 

 

http://purelytheoretical.com/papers/ATCHC.pdf
https://cs.stackexchange.com/questions/55646/strict-positivity


 
Ways to reach inconsistency: 
 
1. No general recursion / circular reasoning: 
foo : False 
foo = foo 
 
2. No fixed-point of functions without fixed-points: 
badNat : Nat 
badNat = 1 + badNat 
 
Note the general recursion on badNat 
 
lemma : ~(exists n : Nat, n == 1 + n) 
 
contradiction : False 
contradiction = proof 
 where 
  proof 
 
3. No liar’s paradox: 
foo : Set 
foo = ~foo 
 
Note the general recursion on foo 
 
contradiction : False 
contradiction = proof 
  where 
   coerce : forall {A B : Set} -> (A == B) -> (A -> B) 
   coerce refl x = x 
 
   lemma1 : foo == ~foo 
   lemma1 = refl 
 
   lemma2 : foo -> ~foo 
   lemma2 = coerce lemma1 
 
   lemma3 : ~foo -> foo 
   lemma3 = coerce (==-sym lemma1) 
 
   lemma4 : (foo -> ~foo) -> ~foo 



   lemma4 g x = g x x 
 
   lemma5 : ~foo 
   lemma5 = lemma4 lemma2 
  
   lemma6 : foo 
   lemma6 = lemma3 lemma5 
 
   proof : False 
   proof = lemma6 lemma5 
 
4. This polymorphic type 
foo : forall (A : Set) , (A -> A) -> A 
 
id : {A : Set} -> A -> A 
id x = x 
 
foo False id : False 
 
5. Girard’s paradox 
 
6. Negative types 
data A : Set where 
 cons : (A -> A) -> A 
 
7. Not strictly positive types 
data A : Set where 
 cons : ((A -> Set) -> Set) -> A 
 
8. Russell’s paradox w/ everything a * 
S : * 
S x = ~(x x) 
 
lemma1 : S S = ~(S S) 
lemma1 = refl 
 
lemma2 : (S S) -> ~(S S) 
lemma2 = coerce lemma1 
 
lemma3 : ~(S S) -> (S S) 
lemma3 = coerce (==-sym lemma1) 
 
lemma4 : ((S S) -> ~(S S)) -> ~(S S) 



lemma4 g x = g x x 
 
lemma5 : ~(S S) 
lemma5 = lemma4 lemma2 
 
lemma6 : (S S) 
lemma6 = lemma3 lemma5 
 
contradiction : False 
contradiction = lemma5 lemma6 
 

 
 
Constraints on organizing large bodies of mathematical knowledge: 
Basic: 
You should of course be able to at least be able to find all the proofs of a proposition in the 
same place. 
 
Logical dependencies:  
You have axioms at the base, and then *layers* / modules of collections of results built on top of 
them. Fundamentally everything is already related in a DAG of dependencies. 
 
“Unnecessary but convenient” proof dependencies: 
Abstracting all the way to category theory or something might simplify the system of proofs by 
having the foundational layers be as generalized and abstract as possible, but do you import 
category theory with a package for basic arithmetic? 
 
Globally unique naming system might help to mitigate this issue somewhat. 
Modules just modules of identifiers 
 
 
 
Topical correspondence 
For example, stuff about numbers goes together, even if we’re talking about numbers with 
fundamentally different internal structure from each other, like the natural numbers and their 
representations vs. the reals or complex numbers. 
Stuff about reflexivity is naturally related to stuff about transitivity, symmetry, antisymmetry, etc.. 
The formula of a sphere might come in a geometry package, but that geometry package might 
not provide calculus 
 

● Forms a completely general graph 
 
Hierarchies of abstraction and generalization; subtyping 



 
Algorithmic dependencies 
Same as the logical dependencies thing but looking at the building blocks of algorithms and the 
layers of combinations of them.  
 
Pedagogical constraints 
The structure must be teachable/learnable, and if anything should be facilitating learning 
 
 
 
 

 
“Must have” knowledge: 
Basic logic 

● everything relies on basic logic 
Properties of the logical connectives + Identity 

Container types 
Lists 
Non-empty lists 
Vectors 
Trees 

Abstract algebra 
At least need basic definitions of structures 
Basically just polymorphic logic 
Types of relations, and their basic properties 

Reflexive, transitive, etc.. 
Orders 
Equivalences 

Types of operations, and their basic properties 
Associative, commutative, etc.. 
Compositions and iterations 

 
Isomorphism 
Homomorphism 

Set theory (or really “subset” theory) 
Cardinality 

Sequences and series 
Theory of limits 
Arithmetic 

Numeric tower: 
Nat unbounded 
Finite Nat 
Integer 



Rational not “fraction” or “float” 
Real not “float” 
Complex 

 
+ the embeddings & projections between these 
+ many representations: 

+ unary Nats vs binary Nats vs decimals 
+ power series reals vs. continued fraction reals 

Cardinality 
Operations 

+ 
- 
* 
/ 
^ 
root 
log 
sum/product over list 
sum/product of formula over range 

Special numbers: 
pi 
e 

Algebra 
Polynomial equations involving variables 

Probability and statistics 
Geometry 
Trigonometry 
Calculus 

Integrals and derivatives 
String data-types 

standard formats 
Formal language theory 

● relies on: 
○ string data-types; not like string primitive but like theory of strings as an 

algebraic structure; not hard, Lists of characters from some alphabet set, 
but has some questions when abstracting the formulation 

○ set theory 
Operations on languages: 

Union, concatenation, Kleene star 
Types of languages and relationships to grammars 

Regular, context-free, unrestricted 
Computability and complexity 

● relies on: 



○ results about functions and relations 
○ numeric tower & number theory 
○ sequences and series 
○ theory of limits 
○ abstract algebra  
○ formal language theory 

Abstract machine classes 
Turing machine, SKI combinators, lambda calculus 
Finite state machine 
Combinatorial circuits 

Proofs of comparison between machine classes; the Chomsky hierarchy 
● Program synthesis via constructive proofs of correspondence between things in 

this hierarchy; ex. regular languages <-> regex <-> FSM <-> minimal DFSM 
Simulating algorithms as simple (or as complex) as iterating a transition function 
Unsolvability of the Halting problem 

Self-representation 
● relies on: 

○ Godel encoding of the language 
○ ideally internal mechanics as simple as possible 
○ philosophical assumptions about the interface between math and the real 

world 
 

 
Decentralizing the data-base: 
Version-control, i.e. Git 
Digital signatures 
Public-key cryptography 
Authenticated data-structures 
http://amiller.github.io/lambda-auth/ 
Homomorphic encryption 
Cryptographic hash functions 
Normal forms for types and terms via beta-reduction and deBruijn indexing, treating the 
mapping to identifiers separately 
 
 

http://amiller.github.io/lambda-auth/

