
Project: Mathematical Knowledge Management

Participants: imode, stoopkid, dmiles, aindilis, b3nszy

Abstract:

MKM seeks to formalize mathematical knowledge with CYC.

Use Cases:

Automated Theorem Proving, Intelligent Tutoring Systems,
Generalized Program Synthesis and Analysis.

● with security/complexity guarantees
● hardware (hypothetically)
● machine languages
● higher level languages
● MKM language itself (i.e. Godelization)

Routing over transitive relations, like equality, implication
● data-format translation as a networking problem

Crowd-sourcing code with guarantees
Semantics for semantic web & semantic wiki
Open-source governance (representing the semantics of it)
“World-building”

Resources:
https://pastebin.com/A8Rbm7Cv
https://frdcsa.org/frdcsa/internal/perform/

stoopkid’s current stack of choice:
some of these layers are potentially overlapping
some of these layers may be able to be smashed together entirely

1. machines & machine languages
2. generic rewriting engine
3. generic deductive engine (i.e. prolog, CYC, etc..)

a. write the rules for your foundation of math
b. untyped lambda calculus as theorem-proving framework

i. inconsistent
c. simple type theory
d. polymorphic type theory
e. dependent type theory
f. homotopy type theory

https://pastebin.com/A8Rbm7Cv
https://frdcsa.org/frdcsa/internal/perform/

g. modal logic
h. pure type systems

4. consistent foundation for math, as database (ideally constructive; i.e. dependent type
theory, homotopy type theory)

a. fixed & finite / finitely-expressible rule/axiom set / schema-set
b. good feature to have: has executable constructive proof, via proof-simplification

derived from logical harmony conditions on introduction/elimination rule-set pairs
i. note: non-termination of execution via proof-simplification is problematic if

allowed without restriction, but this does not necessarily mean it cannot
be allowed. the problems it causes are:

1. causing dependent type-checking to fail to terminate
2. conflicting with some assumed finiteness of the terms implied by

the rest of the rules, example:
a. if you can prove that there’s no Nat x such that x + 1 = x,

then if you can define a term badNat = badNat + 1, then
you’re gonna have a problem

3. confer: data vs. codata
c. necessary feature to have: has proofs about executables

i. possibly via proofs about its proofs, as in the case of (a), as they are
executable

ii. proofs about models of other execution environments; can model and
prove things about Turing-complete computing systems

1. note: if it has executable proofs as in the case of (a), they do not
need to be Turing-complete or even allow any non-termination in
order to achieve this

iii. self-representation, i.e. Godelization
d. proof-checking must terminate, ideally with low complexity except for when the

user specifically directs the proof-checking to run some function of potentially
arbitrary complexity

e. name-spaces; module system
f. version-control?

5. mathematical proof
a. results about pure structure
b. 2 + 2 = 4
c. addition is commutative
d. “exists injection/surjection” is transitive
e. function composition is associative
f. functions respect equality
g. functions distribute over the components of an if-then-else statement
h. every regular language corresponds to a regular expression and a finite state

machine
i. abstract algebra

6. “world-building” as “rules under hypothesis”

a. basically defining your world as abstract algebraic structures
i. Groups/Rings/Fields/Monoids can be seen as being types of worlds
ii. in dependent type theory their structure and properties can be expressed

as the field-types in a record type
iii. you ask whether there actually exist such worlds, i.e. whether the laws

defining the abstract algebraic structure are satisfiable or not
iv. in constructive logic, any such proof of satisfiability would essentially be

an instance of the abstract algebraic structure in question, i.e. a proof of
satisfiability of the Group laws would be an actual Group (i.e. a set with a
binary operation) paired with everything necessary to interface with the
properties specified by the Group laws (i.e. having identity element,
inverses, associativity, totality)

v. in other words, the proofs are (or contain) machine-interpretable models
in the sense of model theory

1. universal algebra + logic = model theory.
2. https://en.wikipedia.org/wiki/Model_theory

vi. now generalize this to essentially arbitrary kinds of constraints, i.e. be
extremely liberal with what kind of abstract algebraic structures you’re
considering:

1. Example:
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.
agda#L96

Yes this is an abstract algebraic datatype
Any instance of it happens to satisfy this property:
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.
agda#L158

2. “prolog in record types” / “prolog under hypothesis”

b. real-world knowledge modeling
c. machine modeling

i. hardware logic verification
d. language modeling

i. C/C++ language specifications
ii. RDF specifications
iii. English

e. scientific modeling; perfect example of why we would place the world-building
layer under hypothesis of the actual mathematical framework rather than allowing
proliferation of rules attempting to express real-world concepts being taken as
“truth”:

i. Newtonian mechanics?
ii. Relativity?

https://en.wikipedia.org/wiki/Universal_algebra
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Logic
https://en.wikipedia.org/wiki/Model_theory
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L96
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L96
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L158
https://github.com/sto0pkid/CategoryTheory/blob/master/Agatha2.agda#L158

iii. Some kind of quantum gravity string theory?
iv. Biocentric universe theory??
v. Flat-earth theory?!?!?

f. constraint specification / “specification specification”
i. “this program must satisfy such and such properties”

g. self-representation i.e. Godelization
i. note: the fact that a Godelization actually corresponds to the formal

system we’re working in, and the results based on this, exist in the
metatheory, which from the perspective of the formal system might as
well be out in the inaccessible “real world”

ii. self-compilation
7. personal knowledge-base
8. networking

a. semantic web
b. crowd-sourced logic & code

i. with guarantees up to whatever constraints are specified in the types it’s
annotated with

c. packaging and distribution management
9. inferencing engines

a. automate reasoning over the knowledge-base below this layer
b. can apply essentially arbitrary methods; proof-checking guarantees you will never

put anything into the system that breaks consistency
i. neural net that learns how to prove things?

1. using proof-checker as a free “trainer”/validator?
2. derive training sets from problems we actually want to solve?

10. interface
a. accessible proof-tactics framework
b. immersive environment (like a semantic wiki)
c. like wikidata but dependently typed
d. LATEX support
e. wolfram / mathematica / etc..

11. execution of general non-terminating algorithms / Turing-completeness recovered
(again) as infinite sequence of user-interactions, doing one terminating step at a time

a. where a “user” is any physical thing that can perform the interactions
b. can describe the individual steps of an arbitrary Turing-machine

i. just need something to keep pushing the “step” button

+ Andrew’s use cases:

I am interested in the A.I. as theorem proving paradigm. I proved a (trivial?) result that shows
that in order to increase the deductive closure of theorem proving systems it is ultimately
necessary that the theorem proving program increase in size:

https://frdcsa.org/frdcsa/introduction/writeup.txt

So my goal is to create a substratum upon which we can have a lot of solvers for different
theorem proving and related computational tasks. Due to Curry Howard we have that theorem
provers are programs. So I collect programs in the hopes that some of them will increase the
deductive closure. (Collecting software is the quickest means to augment your system with
most likely meaningful complexity). For instance, I recently started packaging for Debian
GNU+Linux about 180 more software systems found here:

https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md

So far I’ve made 256 packages of various AI systems, but my intention is to scale that to the
hundreds of thousands, noting that the AI effect means that AI really is a designation for the
unsolved problems in fields, and that what is and isn’t AI software forms a spectrum.

I take the approach that whenever a person has a problem of any sort, they enter that into the
intake part of the system. The system then works to solve as many of these problems as it can,
with emphasis on those problems whose solutions go on to solve other problems for more
people.

One of my projects is the Textbook Knowledge Formation project, which seeks to translate
textbooks semi-automatically into CYC or Prolog. (see https://github.com/aindilis/nlu-mf). It is
similar to RKF and a project from AI2, probably Vulcan or something. The goal here is to
translate all literature, not just mathematical, but I’m using mathematical literature to bootstrap
the process because of the affinity between mathematics and CS KBS systems.

I have over 600 internal projects that serve to glue the external code together, Glue AI I think
I’ve heard it termed by dmiles. (see https://frdcsa.org/frdcsa/internal and
https://frdcsa.org/frdcsa/minor).

So some more specific use cases: program synthesis. It should be possible to create an
intelligent agent which debates how to implement solutions to various algorithmic problems. For
instance, sorting has implementations like quicksort, etc. So for a given problem definition, the
software should be able to use its mathematical knowledge to rule out certain approaches to the
problem, and to help guide the search for the algorithmic solution.

https://frdcsa.org/frdcsa/introduction/writeup.txt
https://github.com/johnyf/tool_lists/blob/master/verification_synthesis.md
https://github.com/aindilis/nlu-mf
https://frdcsa.org/frdcsa/internal
https://frdcsa.org/frdcsa/minor

I believe that the totality of mathematics/logic/CS (as well as the rest of human knowledge)
cannot fit into one brain, but it can fit into a digital mind that lacks conventional mortality, and
that creating such a digital mind is the paramount occupation of our time.

MKM can not only aid in theorem proving but also with pedagogy, and help to answer questions
directly wrt mathematical knowledge for people who are learning or relearning respective areas
of mathematics/CS.

Description of type theory

4 kinds of rules define a data-type:
Type-formation
Introduction
Elimination
Computation

*note: the type-formation rules can potentially be seen as introduction rules for types

1. Type-formation rules tell you when the data-type or instance of the logical connective even
exists in the first place, like Nat is just defined to be a type, and List A is a type iff. A is a type,
A AND B is a type iff. A and B are types

2. Introduction rules tell you what objects you have in the type; equivalently, since types are
propositions and more specifically are the types of the proofs of those propositions, the
introduction rules tell you what counts as a proof of the proposition. Example,
 zero : Nat
 suc n : Nat, if n : Nat

3. Elimination rules for a type/connective tell you what you can derive from an object in that
type / proof of an instance of that connective. This allows you to provide proofs of universal
quantifications over that type by (possibly recursively) case-matching on the introduction rules,
which essentially corresponds to proofs-by-induction. Example:
 f : forall (n : Nat) , P n
 f zero = zero-case
 f (suc n) = f-induction n (f n)

 where
 f-induction : (n : Nat) → P n → P (suc n)

4. Computation rules for a type/connective give you:
 * Computation, of course
 * Proof-simplification
 * The actual rewrite relation on terms
 * The primitive (and computably & deterministically traversable) equality relation on terms

Example:

Only the type-formation and the introduction rules need to be provided and the elimination and
computation rules can be derived in a standard fashion in order to satisfy what are called
“logical harmony conditions”. In fact we can provide a unified presentation of (almost) all the
standard types, which is what will be presented here.

Let R be the type (or parameterized/indexed) type-family being defined.

Γ and Δ represent sequences of typing judgements (a : A) such that the types in later
judgements in the sequence can depend on terms in earlier values in the sequence, as in “(n :
Nat), (m : Fin n)”

γ and δ represent the term-variables in these sequences, i.e. “n, m” in the previous example.

Let b[x\a] mean “substitute x for a in b”
Let {δ}.c mean δ is a sequence of term-variables contained in the term c.

Standard data-type declaration syntax:

data R (γ : Γ) : Δ → Set where
 intro1 : (δ1 : Δ1) → R γ (v1 γ δ1)
 ...
 intron : (δn : Δn) → R γ (vn γ δn)

where, vᵢ : Γ → Δi → Δ
and Δi strictly positive occurrences of R _? _?

Example:
data Vector (A : Set) : Nat → Set where
 intro1 : Vector A zero
 intro2 : {n : Nat} → (a : A) → (v : Vector A n) → Vector A (suc n)

v1 : Set → Nat
v1 A = zero

v2 : (A : Set)(n : Nat)(a : A)(v : Vector A n) → Nat
v2 A n a v = suc n

Represented as natural deduction rules:

Type formation rules

G |- γ : Γ

G, δ : Δ |- R γ δ : Set

Introduction rules

G |- R γ δ : Set
G |- p : Δi
G |- (vi γ p) : Δ
-- intro1
G |- R-intro1 p : R γ δ

...

G |- R γ δ : Set G |- p : Δ�
-- introN
G |- R-introN p : R γ δ

Elimination rules

G |- p : R γ δ
G, x : R γ δ |- C : Set
G, δ1 : Δ1 , : Γ1 |- c1 : C[x\(intro1 δ1)]
...
G, δ1 : Δn , : Γn |- cn : C[x\(intron δn)]
--- elim
G |- R-elim p {δ1 , γ1 }.c1 ... {δn , γn}.cn : C[x\p]

Where
Γi = { (R-elim q {δ₁}.c₁ ... {δ�}.c� : C[x\q]) | (q : R γ δ) in Δᵢ}

This is how we get structural induction on the terms in R γ δ.

Computation rules
G |- R-elim (introᵢ α) {δ₁}.c₁ ... {δ�}.c� : C
-- comp
G |- R-elim (introᵢ α) {δ₁}.c₁ ... {δ�}.c� = cᵢ[δᵢ\α] : C

Related info:
A Tutorial on the Curry Howard Correspondence:
http://purelytheoretical.com/papers/ATCHC.pdf
Logical harmony conditions
W types and M-types
F-algebras and F-coalgebras
Initiality and finality
Negative and positive types
https://cs.stackexchange.com/questions/55646/strict-positivity

Difference between parameters and indices
Induction-recursion, induction-induction, and higher-inductive types
Refinement types? (“set-builder subtyping”)
Univalence?

http://purelytheoretical.com/papers/ATCHC.pdf
https://cs.stackexchange.com/questions/55646/strict-positivity

Ways to reach inconsistency:

1. No general recursion / circular reasoning:
foo : False
foo = foo

2. No fixed-point of functions without fixed-points:
badNat : Nat
badNat = 1 + badNat

Note the general recursion on badNat

lemma : ~(exists n : Nat, n == 1 + n)

contradiction : False
contradiction = proof
 where
 proof

3. No liar’s paradox:
foo : Set
foo = ~foo

Note the general recursion on foo

contradiction : False
contradiction = proof
 where
 coerce : forall {A B : Set} -> (A == B) -> (A -> B)
 coerce refl x = x

 lemma1 : foo == ~foo
 lemma1 = refl

 lemma2 : foo -> ~foo
 lemma2 = coerce lemma1

 lemma3 : ~foo -> foo
 lemma3 = coerce (==-sym lemma1)

 lemma4 : (foo -> ~foo) -> ~foo

 lemma4 g x = g x x

 lemma5 : ~foo
 lemma5 = lemma4 lemma2

 lemma6 : foo
 lemma6 = lemma3 lemma5

 proof : False
 proof = lemma6 lemma5

4. This polymorphic type
foo : forall (A : Set) , (A -> A) -> A

id : {A : Set} -> A -> A
id x = x

foo False id : False

5. Girard’s paradox

6. Negative types
data A : Set where
 cons : (A -> A) -> A

7. Not strictly positive types
data A : Set where
 cons : ((A -> Set) -> Set) -> A

8. Russell’s paradox w/ everything a *
S : *
S x = ~(x x)

lemma1 : S S = ~(S S)
lemma1 = refl

lemma2 : (S S) -> ~(S S)
lemma2 = coerce lemma1

lemma3 : ~(S S) -> (S S)
lemma3 = coerce (==-sym lemma1)

lemma4 : ((S S) -> ~(S S)) -> ~(S S)

lemma4 g x = g x x

lemma5 : ~(S S)
lemma5 = lemma4 lemma2

lemma6 : (S S)
lemma6 = lemma3 lemma5

contradiction : False
contradiction = lemma5 lemma6

Constraints on organizing large bodies of mathematical knowledge:
Basic:
You should of course be able to at least be able to find all the proofs of a proposition in the
same place.

Logical dependencies:
You have axioms at the base, and then *layers* / modules of collections of results built on top of
them. Fundamentally everything is already related in a DAG of dependencies.

“Unnecessary but convenient” proof dependencies:
Abstracting all the way to category theory or something might simplify the system of proofs by
having the foundational layers be as generalized and abstract as possible, but do you import
category theory with a package for basic arithmetic?

Globally unique naming system might help to mitigate this issue somewhat.
Modules just modules of identifiers

Topical correspondence
For example, stuff about numbers goes together, even if we’re talking about numbers with
fundamentally different internal structure from each other, like the natural numbers and their
representations vs. the reals or complex numbers.
Stuff about reflexivity is naturally related to stuff about transitivity, symmetry, antisymmetry, etc..
The formula of a sphere might come in a geometry package, but that geometry package might
not provide calculus

● Forms a completely general graph

Hierarchies of abstraction and generalization; subtyping

Algorithmic dependencies
Same as the logical dependencies thing but looking at the building blocks of algorithms and the
layers of combinations of them.

Pedagogical constraints
The structure must be teachable/learnable, and if anything should be facilitating learning

“Must have” knowledge:
Basic logic

● everything relies on basic logic
Properties of the logical connectives + Identity

Container types
Lists
Non-empty lists
Vectors
Trees

Abstract algebra
At least need basic definitions of structures
Basically just polymorphic logic
Types of relations, and their basic properties

Reflexive, transitive, etc..
Orders
Equivalences

Types of operations, and their basic properties
Associative, commutative, etc..
Compositions and iterations

Isomorphism
Homomorphism

Set theory (or really “subset” theory)
Cardinality

Sequences and series
Theory of limits
Arithmetic

Numeric tower:
Nat unbounded
Finite Nat
Integer

Rational not “fraction” or “float”
Real not “float”
Complex

+ the embeddings & projections between these
+ many representations:

+ unary Nats vs binary Nats vs decimals
+ power series reals vs. continued fraction reals

Cardinality
Operations

+
-
*
/
^
root
log
sum/product over list
sum/product of formula over range

Special numbers:
pi
e

Algebra
Polynomial equations involving variables

Probability and statistics
Geometry
Trigonometry
Calculus

Integrals and derivatives
String data-types

standard formats
Formal language theory

● relies on:
○ string data-types; not like string primitive but like theory of strings as an

algebraic structure; not hard, Lists of characters from some alphabet set,
but has some questions when abstracting the formulation

○ set theory
Operations on languages:

Union, concatenation, Kleene star
Types of languages and relationships to grammars

Regular, context-free, unrestricted
Computability and complexity

● relies on:

○ results about functions and relations
○ numeric tower & number theory
○ sequences and series
○ theory of limits
○ abstract algebra
○ formal language theory

Abstract machine classes
Turing machine, SKI combinators, lambda calculus
Finite state machine
Combinatorial circuits

Proofs of comparison between machine classes; the Chomsky hierarchy
● Program synthesis via constructive proofs of correspondence between things in

this hierarchy; ex. regular languages <-> regex <-> FSM <-> minimal DFSM
Simulating algorithms as simple (or as complex) as iterating a transition function
Unsolvability of the Halting problem

Self-representation
● relies on:

○ Godel encoding of the language
○ ideally internal mechanics as simple as possible
○ philosophical assumptions about the interface between math and the real

world

Decentralizing the data-base:
Version-control, i.e. Git
Digital signatures
Public-key cryptography
Authenticated data-structures
http://amiller.github.io/lambda-auth/
Homomorphic encryption
Cryptographic hash functions
Normal forms for types and terms via beta-reduction and deBruijn indexing, treating the
mapping to identifiers separately

http://amiller.github.io/lambda-auth/

