
Compiling CDC/WHO/etc COVID-19 Recommendations into Interactive Behavior
Trees Accessed Via Cell-Phone (DRAFT 1)

Andrew Dougherty
FRDCSA Project

adougher9@gmail.com

Abstract

CDC/WHO/etc have a last mile delivery problem in
spreading efficacious knowledge and procedures to deal
with COVID-19 to citizens, in order to save lives by pre-
venting the spread of the pandemic and dealing with its
consequences. Why not compile the recommendations
into a Behavior Tree specification that can interactively
walk people through tasks from their cell phones? For
instance, the user enters into the interface (with auto-
completion) some task, such as ’go to the grocery store’.
The corresponding procedure is found, and it walks the
user through this procedure, like an interactive checklist
which can branch based on results of tasks. The sources
of parts of rules can be included, in order to establish
more trust, and users may import rules and edit their
Behavior Trees to suit their unique circumstances. As
rules become updated or changed, they can be automat-
ically downloaded and reimported. We hope somebody
better positioned either picks this Behavior Tree idea up
and runs with it or helps us complete it to aid people to
better cope with COVID-19.

Introduction

Getting the right information about COVID-19 to people at
the right time is a life-critical problem.1 What is clearly
needed is some vehicle to deliver procedural information at
the right time in order to deal with daily procedures altered
by COVID-192. We propose that the user be interactively
walked through common procedures, such as going to the
grocery store, receiving mail, etc, in such a way that the user
is presented with the safest best practices for that procedure
interactively from their cell phone.

If people used this program, the chance of them contract-
ing the disease might lessen. Furthermore, people could

1A user might not be able to find the relevant information (in
time to be applicable) even if they have web access. They may have
forgotten the information. They may be under time pressure. They
might be in the middle of some situation they hadn’t anticipated.
As an example, you might see how long it takes you to find out the
recommended temperature at which point you may be considered
symptomatic of COVID-19.

2such as helping to reduce transmission of COVID-19, quara-
tine and care for people in your house who contract it, resupply
your house without transmitting it, and all other aspects of life af-
fected by the disease.

better care for individuals in their house who have the dis-
ease, by following the CDC/WHO guidelines interactively.
It would help to advise them regarding whether they should
travel. It would help them to restock their pantries. It would
help them follow proper cleaning and decontamination pro-
cedures.

Figure 1: Sample Interactive Plan Monitor

By compiling the recommendations into an executable
format, we reduce the amount of work necessary to bring
the relevant information to bear when applicable, increasing
public safety and saving lives. Procedures may automati-
cally updated to reflect the developments and changes to the
best practices.

We propose using the well-known technique of Behavior

Trees (from Robotics and Game AI) to represent the proce-
dures. This representation offers imperative reactive “plan-
ning,” “planning” with sensing, and interactive plan moni-
toring capabilities.

Example Run-Through

Here we provide a sample run-through of a Behavior Tree
system.3

Suppose the user enters into their cell phone (with auto-
completion) the goal: “Go to the grocery.” The system
would have a behavior tree node for this. Figures 2 and 3 are
two (here, incomplete) and alternate Behavior Tree specifi-
cations for the task of going to the grocery.

buy_groceries -->

start_make_all_preparations,

make_shopping_list,

print_shopping_list,

clear_staging_area,

ensure_replete,

end_make_all_preparations

ensure_after_time_23_30_00,

put_on_gloves,

%% ...

put_on_gloves -->

wash_hands,

%% ...

wash_hands -->

%% ...

.

Figure 2: Example SimGen Behavior Tree

(buy_groceries(Person)) ==>>

begin_state(make_all_preparations),

act(make_shopping_list(Person,List)),

true_code(isa(List,shoppingList)),

act(print(Person,List)),

act(clear_staging_area(Person)),

ensure_state(replete(Person)),

end_state(make_all_preparations),

true_code(currentTime(Time)),

ensure_state(after(Time,[23:30:00])),

act(put_on_gloves(Person)),

%% ...

(put_on_gloves(Person)) ==>>

act(wash_hands(Person)),

%% ...

.

(wash_hands(Person)) ==>>

%% ...

.

Figure 3: Example NomicMU Behavior Tree

The system would then proceed to follow the nodes of

3
https://frdcsa.org/˜andrewdo/projects/

flp-screencaps/

the behavior tree via an in-order-traversal. The system thus
presents the current goal any constraints the user should be
obeying (such as do not leave the house).

donny wants to> buy groceries

donny should begin making preparations

donny should make a shopping list

donny should print shopping list

donny should clear the staging area

donny should eat

donny should have finished making preparations

donny should wait until 11:30 PM

donny should wash hands

- Submitted from any mode to system:
donny wants to>buy groceries
- Message sent to IEM to “donny begin making prepara-

tions.”
- donny confirms the following prompt in the web-app:
donny begins making preparations.
- The IEM system updates the world state, and proceeds

with the “real-time simulation:”
- Message sent to IEM to “donny should make a shopping

list.”
- donny confirms the following prompt in the web-app:
donny makes a shopping list.
- The IEM system updates the world state, and proceeds

with the “real-time simulation:”

Node Types

Note that the examples here4 do not implement any node
type besides sequencers and leaf nodes, but this is easily
possible and in fact the entire reason for not simply using
checklists.

Strengths and Limitations of Behavior Trees

It is outside the scope of this paper to provide a thorough
introduction to Behavior Trees. We refer the user to
the following article: https://www.gamasutra.

com/blogs/ChrisSimpson/20140717/221339/

Behavior_trees_for_AI_How_they_work.php

We now compare Behavior Trees to other approaches
such as BDI5 agents and PDDL6 planning. Behavior Trees
appear to be a form of “imperative reactive planning-with-
sensing, and execution.” They are imperative in the sense
that, rather than employing some form of declarative plan-
ning, where the rules are spelled out and the system infers a
plan, you must essentially construct the plan yourself. For
instance, in PDDL, you specify the operators and facts of
the domain and the planning algorithm generates the plan.
With Behavior Trees, you must edit them so that you get the
desired behavior. They are therefore less deliberative than
PDDL. In lieu of a generating the best possible plan via a

4due to time constraints
5https://tinyurl.com/v6hzdre
6
https://en.wikipedia.org/wiki/Planning_

Domain_Definition_Language

deliberative planning system, they simply provide *a* plan.
Having *a* plan is better than not having a plan at all. But
Behavior Trees can lead you into a dead-end.

Conversely, PDDL has major limitations, such as:

• requiring perfect information

• inability to deal with uncertainty

• generally unable to sense or react outside of certain spe-
cialized planners

• inability to fail gracefully when no plan may be found

• inability to create new objects at run-time

• inability to modify the goal stack at run-time

• inability to have nonlinear/branching plans

• lack of inborn plan execution monitoring

BDI agents such as Spark provide both declarative and
imperative features, but we have not been successful in im-
plementing agents with a BDI agent development system
such as Spark, Jason or GOAL. Peleus7 implemented a plan-
ner combined with a BDI agent.

However, we have made more headway with Behavior
Trees. NomicMU8 implements planning and Behavior Trees
using several planning systems such as the Event-Calculus
Planner and Marty’s Planner. Behaviac also implements
HTN Planning, Finite State Machines and Behavior Trees.

Behavior Trees also implement execution monitoring as
an automatic by-product. Whereas PDDL interactive exe-
cution monitoring is very difficult, involving checking and
propagating complex preconditions and effects, respectively,
as well as complex execution managers like PLEXIL. With
Behavior Trees you get that basically for free.

Web Interface

We advocate for developing a web interface which uses
WebSockets, so that triggers such as alarms and timers are
able to push to the client. We already have one web inter-
face under development using the Free-Life-Planner9, but
that project has a lot of technical debt and cannot be released
in a timely fashion. Therefore we advocate for developing
another web interface. Prolog affords a web interface with
support for WebSockets.

Another feature desirable in the web interface would be
individualized cell applications that wrap the interface, such
as could be made with Apache Cordova.

Attempted Implementation

We implemented some rough pseudo-code10 translating
some portions of an earlier version of the CDC guidelines
document called “Interim Guidance: Get Your Household

7
http://www.meneguzzi.eu/felipe/software.

shtml
8
https://github.com/TeamSPoon/NomicMU

9https://github.com/aindilis/

free-life-planner
10
https://frdcsa.org/˜andrewdo/projects/3/

coronavirus.pl

Ready for Coronavirus Disease 2019 (COVID-19)”11 for
COVID-19 into Behavior Trees in a Prolog format.

We attempted to develop such a domain using the SimGen
and NomicMU systems. We ran into issues while under time
pressure that we have not yet solved using each approach.

SimGen Implementation

SimGen12, developed by Simularity LLC, is a Behavior Tree
implemention for Prolog. SimGen has the advantage that the
user can simply read the human-readable English and inter-
pret it. (see Figure 4). Originally designed to run Partial
Differential Equation simulations, it is not perfectly suited
to our application. While some of the issues we had are su-
perficial13 and may have been introduced by our code which
attempted to harness SimGen, others are deeper such as the
lack of variables for terms.

Human-readability may lead to issues like being unable
to posit constraints, such as “Do not leave the house.” At the
very least, the web-based interface should show red flags
with all such applicable constraints, but better would be for
violation of constraints to be detected during invocation of
goals such as “Go to the grocery.”, ideally before the user
has initiated the plan.

The lack of planning is one possible shortcoming of a pure
Behavior Tree approach. Ideally this would be remedied.
As an experiment, we tried to remedy it in the NomicMU
implementation, which we address in the next subsection.

NomicMU Implementation

We attempted to implement the domain using NomicMU
with variables and “modalities.”

NomicMU is ideally a system to simulate the world using
Natural Language Understanding (NLU). Users can posit
facts and rules via English and the system interprets it.
NomicMU is not yet at an alpha release.

This approach tended to bog down too much in details,
such as having to create objects that denoted individual sur-
faces to be cleaned. Clearly this is too much detail. We
attempted to calibrate the detail required to hit the sweet
spot between adequately conveying and covering the domain
vs practicality of implementation. Thus we developed an
overly detailed PDDL domain, to try to relax the amount of
detail in. The domain is an attempt to eliminate sickness
from exposure to fomites when using the bathroom.14 15

Other Existing Behavior Tree Implementations

There are a number of existing implementations of Be-
havior Trees in languages besides Prolog, such as Python,
JavaScript, C++ and Java.

11https://www.cdc.gov/

coronavirus/2019-ncov/community/

get-your-household-ready-for-COVID-19.html
12
https://github.com/simularity/SimGen

13A good addition to the language would be a ’try in sequence
til one succeeds’ node type.

14https://frdcsa.org/˜andrewdo/projects/3/

bathroom.d.verb
15
https://frdcsa.org/˜andrewdo/projects/3/

bathroom.p.verb

root ->

go_to_bathroom

.

go_to_bathroom ->

grab_cell_phone,

walk_to_door,

attempt_to_open_door,

walk_through_door,

close_door

.

grab_cell_phone ->

confirm_execution

.

walk_to_door ->

confirm_execution

.

attempt_to_open_door ->

{try

{->

{not open_door},

{not unlock_and_open_door},

{not smash_door}

}}

.

Figure 4: Sample SimGen Behavior Tree

Behavior316 is a JavaScript implementation of Behavior
Trees and a Rule Editor that outputs to an intermediate rep-
resentation using JSON.

There is already a game which allows the user to edit their
own behavior trees. The game called Gladiabots - AI Com-
bat Arena17.

Ideally, an organization such as a game development stu-
dio or a tech giant more experienced with all aspects of Be-
havior Trees and large-scale production deployments could
take this further than the author has with his limited skills
and resources. Or, they could help us to finish the SimGen
and/or NomicMU implementations and develop the web in-
terface.

Compilation of CDC Recommendations into

Behavior Trees

NLU-MF

NLU-MF (standing for Natural Language Understanding -
Manual Formalization) is a system we have developed for
converting recommendations to Prolog (or in this case our
Prolog representation of Behavior Trees). 18 The idea is to

16
https://github.com/behavior3

17https://gladiabots.com/
18
https://frdcsa.org/˜andrewdo/projects/3/

interim-guidance.txt.nlu.pl

process the text into sentences in a machine-readable format
and allow the user to construct the Behavior Trees in that
format.

Rule Provenance

Another problem to be addressed is advice is often blended
together to make rules. A future version of the software
might include better provenance of rules, it has been sug-
gested that semi-ring annotations19 used in databases would
be a state-of-the-art method to track how sources are com-
bined into rules, to allow for some form of auditability (e.g.
is this just hearsay) in order to increase public confidence in
the rules.

Shared Priority System Editor v2 (SPSE2)

We also used a tool we developed called SPSE220(?) to be-
gin generating plans for our own needs that we could later
abstract into Behavior Trees.

MAKE_SHOPPING_LIST

PRINT_OUT_SHOPPING_AND_INSTRUCTION_LISTS

CLEAR_OFF_DINING_ROOM_TABLE

EAT_BEFOREHAND

MAKE_ALL_PREPARATIONS

WAIT_UNTIL_11_30_PM_TO_LEAVE

PUT_GLOVES_ON_BEFORE_LEAVING_HOUSE

BRING_WATER_BOTTLES_TO_REFILL

WEAR_MASKS

LEAVE_HOUSE

GET_IN_CAR

CHECK_GAS_LEVEL

DRIVE_TO_WALMART

ARE_LOTS_OF_PEOPLE_THERE

ARE_THEY_OUT_OF_INVENTORY

WALK_INTO_WALMART

START_SHOPPING

GET_EXTRA_5_GAL_JUGS

USE_SELF_CHECKOUT

FINISH_SHOPPING

DRIVE_HOME

PUT_FOOD_IN_STAGING_AREA

DECONTAMINATE_FOOD_WITH_BLEACH_SOLUTION

REMOVE_GLOVES_AND_MASKS

DISPOSE_PROPERLY_OF_GLOVES_AND_MASKS

Conclusion

Given the difficulty of containing COVID-19 and caring for
people affected and the difficulty of following best prac-
tices, it seems reasonable that a real-time interactive system
to help people adhere to the published guidelines, if possi-
ble, would be a major boost to containment and treatment
efforts. Again, we hope that a better positioned organization
can pick up the idea and run with it, or help us complete our
work with SimGen and NomicMU.

19https://users.dcc.uchile.cl/˜pbarcelo/KG.

pdf
20
https://frdcsa.org/visual-aid/pdf/SPSE2.

pdf

sanitize_surface(Person,Surface) ==>>

ensure_state(wearing_gloves(Person,_Gloves)),

true_state(in(Surface,Room)),

true_code(isa(Room,room)),

ensure_state(well_ventilated(Room)),

true_state(holding(Person,HouseholdCleaningSprayOrWipe)),

true_code(isa(HouseholdCleaningSprayOrWipe,cleaningSpray)),

act(read_label(Person,labelFn(HouseholdCleaningSprayOrWipe))),

act(use_as_directed_on(Person,HouseholdCleaningSprayOrWipe,Surface)).

Figure 5: NomicMU Behavior Tree (with Variables and Modalities)

act(self_check_for_covid19_symptoms_is_positive(Person)) ==>>

act(check_temperature_fahrenheit(Person,Temperature)),

sources([s(d(’https://www.cdc.gov/coronavirus/2019-ncov/downloads/COVID-19_CAREKit_ENG.pdf’)

s([56]))]),

(Temperature > 100.4 ->

(

declare(h(has_illness,Person,fever)),

declare(h(is_symptomatic,Person,covid19))

)).

Figure 6: Behavior Tree with Source Annotations, Conditional Rules and Knowledge-Base Interaction

Acknowledgements

I am grateful especially to Douglas Miles for his work
on LogicMOO/NomicMU/PrologMUD and his mentorship
with A.I.. I am also grateful to Simularity for making Sim-
Gen available, Anne Ogborn for helping advance FRDCSA
projects such as the Free Life Planner, Jess Balint for his
help with the Free Life Planner, and to my partner Meredith
McGhan for her loving kindness.

References

Dougherty, A. J. 2011. Temporal planning and inferencing
for personal task management with SPSE2.

