
Self-Improving Agentic Development via OpenCyc Knowledge
Representation: A Framework for Machine-Verified Autonomous

Software Engineering

Anonymous Author
Institution Affiliation

email@institution.edu

July 24, 2025

Abstract

We propose a novel framework for autonomous
software development that combines formal
knowledge representation (OpenCyc), large lan-
guage models (LLMs), and machine verification
systems to create self-improving development
agents. Unlike current AI coding assistants that
operate reactively, our approach enables agents
to reason formally about software architecture,
development priorities, and code quality using a
comprehensive knowledge base of software engi-
neering principles. The agent maintains explicit
representations of its own codebase, development
state, and architectural decisions, enabling au-
tonomous planning, implementation, and veri-
fication cycles. We demonstrate how this ap-
proach naturally integrates with existing formal
verification tools (ACL2, Lean4, Coq) while pro-
viding a practical path toward fully autonomous
software development.

1 Introduction

Current AI-assisted software development op-
erates primarily in a reactive mode: human
developers request code generation, debugging
assistance, or architectural advice from LLMs
like GPT-4 or Claude. While powerful, this
paradigm suffers from several fundamental limi-
tations:

1. No persistent memory of architectural
decisions or development history

2. Lack of formal reasoning about software
correctness and design principles

3. Human-driven planning with no au-
tonomous goal-setting or priority manage-
ment

4. Isolated interactions without cumulative
learning or self-improvement

Meanwhile, the formal verification community
has developed sophisticated tools (ACL2, Lean4,
Coq, Isabelle/HOL) for machine-verified soft-
ware development, but these require extensive
human expertise and manual theorem proving.

We propose bridging these domains through
OpenCyc-based agentic development: au-
tonomous agents that maintain formal knowl-
edge representations of software engineering
principles, their own codebase, and develop-
ment processes. This enables genuinely au-
tonomous software development with machine-
verifiable correctness guarantees.

1.1 Key Contributions

� A formal framework for representing soft-
ware engineering knowledge in OpenCyc

� An autonomous development cycle that rea-
sons about priorities, implements solutions,
and verifies correctness

� Integration pathways with existing formal
verification systems

1

� A practical implementation demonstrating
self-improving knowledge base development

� Theoretical foundations for provably correct
autonomous software engineering

2 Background and Motivation

2.1 Limitations of Current AI Devel-
opment Tools

Current AI coding assistants exhibit several crit-
ical limitations for autonomous development:

Statelessness: Each interaction begins from
scratch, with no memory of previous architec-
tural decisions, bug fixes, or design rationale.

Reactive Planning: Tools respond to hu-
man requests but cannot autonomously identify
technical debt, architectural improvements, or
feature priorities.

Informal Reasoning: Code generation re-
lies on pattern matching and statistical inference
rather than formal reasoning about correctness,
performance, or maintainability.

No Self-Modification: AI tools cannot au-
tonomously improve their own capabilities or de-
velopment processes.

2.2 The Promise of Formal Knowl-
edge Representation

OpenCyc provides a mature framework for rep-
resenting and reasoning about complex domains
through:

� Formal Ontologies: Structured represen-
tations of concepts and relationships

� Logical Inference: Sound reasoning about
complex relationships and dependencies

� Meta-Reasoning: The ability to reason
about reasoning itself

� Persistent Knowledge: Cumulative
learning and knowledge retention

Applied to software development, this enables
agents to:

� Maintain formal models of software archi-
tecture and design patterns

� Reason about feature dependencies, imple-
mentation priorities, and technical debt

� Learn from development experience and en-
code best practices

� Make provably sound decisions about code
modifications

2.3 Machine Verification and Au-
tonomous Development

Formal verification systems like ACL2 and Lean4
provide mathematical guarantees about software
correctness but require significant human exper-
tise. Our framework creates a pathway for au-
tonomous agents to:

1. Generate verification conditions based
on formal specifications

2. Attempt automated proofs using theo-
rem proving tactics

3. Learn from proof failures to improve
code generation

4. Maintain verification invariants across
code modifications

3 The OpenCyc Agentic Devel-
opment Framework

3.1 Core Architecture

Our framework consists of five interconnected
components (Figure 1):

Agent Core ↔ OpenCyc KB
(Planning/Exec) (Dev Knowledge)

↕
Code Generator Repository Test Executor

(LLM Integration) Manager (Git) (Automated QA)

Figure 1: Core architecture of the agentic devel-
opment framework

2

Agent Core: The central reasoning system
that queries the knowledge base, makes devel-
opment decisions, and coordinates other compo-
nents.

OpenCyc Knowledge Base: Formal rep-
resentations of software engineering principles,
current codebase structure, development history,
bug patterns, and performance characteristics.

Verification Engine: Integration with for-
mal verification tools for generating and checking
proofs of correctness.

Code Generator: LLM-based code synthesis
guided by formal specifications and architectural
constraints.

Repository Manager: Version control inte-
gration for tracking changes, managing branches,
and maintaining development history.

Test Executor: Automated testing frame-
work providing feedback for the learning cycle.

3.2 Knowledge Representation
Schema

We define a comprehensive ontology for software
development knowledge:

3.2.1 Architectural Knowledge

(#$isa #$SoftwareArchitecture #

$AbstractionLevel)

(#$isa #$LayeredArchitecture #

$SoftwareArchitecture)

(#$isa #$MicroserviceArchitecture #

$SoftwareArchitecture)

(# $implies

(#$and (# $uses ?system #

$LayeredArchitecture)

(# $dependsOn ?upperLayer ?

lowerLayer))

(#$not (# $dependsOn ?lowerLayer ?

upperLayer)))

Listing 1: Architectural knowledge
representation

3.2.2 Development Process Knowledge

(#$isa #$DevelopmentPhase #

$TemporalThing)

(#$isa #$RequirementAnalysis #

$DevelopmentPhase)

(#$isa #$Implementation #

$DevelopmentPhase)

(#$isa #$Testing #$DevelopmentPhase)

(# $implies

(#$and (# $currentPhase ?project ?phase

)

(# $testsFailing ?project))

(# $shouldTransitionTo ?project #

$Debugging))

Listing 2: Development process representation

3.2.3 Code Quality Knowledge

(#$isa #$CodeQualityMetric #

$MeasurableProperty)

(#$isa #$CyclomaticComplexity #

$CodeQualityMetric)

(#$isa #$TestCoverage #

$CodeQualityMetric)

(# $implies

(#$and (# $cyclomaticComplexity ?

function ?complexity)

(# $greaterThan ?complexity 10))

(# $shouldRefactor ?function))

Listing 3: Code quality metrics

3.3 Autonomous Development Cycle

The agent operates in continuous development
cycles:

Algorithm 1 Autonomous Development Cycle

1: Phase 1: Query current development state
2: Phase 2: Reason about development prior-

ities
3: Phase 3: Generate implementation strategy
4: Phase 4: Generate and verify code
5: Phase 5: Execute tests and analyze feed-

back
6: Phase 6: Integrate knowledge and update

KB
7: GOTO Phase 1

3.3.1 State Assessment

3

;; Query current development state

(# $currentPhase #$MyProject ?phase)

(# $testResults #$MyProject ?results)

(# $technicalDebt #$MyProject ?debt)

(# $featureRequests #$MyProject ?requests

)

Listing 4: State assessment queries

3.3.2 Priority Reasoning

;; Determine next development priority

(# $shouldWorkOn #$MyProject ?task)

(# $because

(#$and (# $criticalBug ?task)

(# $affectsUsers ?task #

$ManyUsers))

(# $priority ?task #$Highest))

Listing 5: Priority determination

4 Integration with Formal Ver-
ification Systems

4.1 ACL2 Integration

ACL2’s theorem proving capabilities integrate
naturally with our framework:

;; OpenCyc representation of ACL2

theorem

(# $acl2Theorem #$SortingCorrectness

(# $implies (#$true -listp ?x)

(# $orderedp (# $sort ?x))))

;; Automatic theorem generation

(# $implies

(# $needsProof ?function ?property)

(# $generateACL2Theorem ?function ?

property))

Listing 6: ACL2 integration

The agent can:

1. Generate ACL2 definitions from high-
level specifications

2. Attempt automated proofs using
ACL2’s proof tactics

3. Learn from proof failures to improve
code generation

4. Maintain verification invariants across
code modifications

4.2 Lean4 Integration

Lean4’s dependent type system provides rich
specification capabilities:

;; OpenCyc representation of Lean4 types

(# $leanType #$SortedList

(# $dependentType #$List

(# $constraint #$Sorted)))

;; Automatic type inference

(# $implies

(# $functionSignature ?f ?inputType ?

outputType)

(# $generateLeanType ?f (? inputType ->

?outputType)))

Listing 7: Lean4 integration

4.3 Verification-Driven Development

The agent follows a verification-first approach:

1. Formal Specification: Requirements en-
coded as logical formulas

2. Implementation Synthesis: Code gener-
ated to satisfy specifications

3. Automated Verification: Proofs at-
tempted using theorem provers

4. Refinement: Failed verifications guide
code improvements

5. Knowledge Encoding: Successful pat-
terns stored for reuse

5 Implementation Case Study:
Self-Improving OpenCyc

We demonstrate our framework through a con-
crete implementation: an autonomous agent
that develops and improves its own OpenCyc
knowledge base system.

4

5.1 Initial Knowledge Base

The agent begins with basic knowledge about:

� Prolog programming principles

� OpenCyc inference rules

� Software testing methodologies

� Common algorithmic patterns

5.2 Self-Assessment Capabilities

;; Agent queries its own capabilities

(# $currentCapability #$MySelf #

$BasicInference)

(# $missingCapability #$MySelf #

$CycLParsing)

(# $developmentPriority #$CycLParsing #

$High)

Listing 8: Self-assessment

5.3 Autonomous Implementation

The agent autonomously:

1. Identifies missing features through
knowledge base queries

2. Plans implementation strategies based
on software engineering principles

3. Generates code using LLM integration
with formal constraints

4. Verifies correctness through automated
testing and theorem proving

5. Integrates successful implementations
into its knowledge base

5.4 Learning and Improvement

Each development cycle enhances the agent’s ca-
pabilities:

;; Learning from successful

implementations

(# $implies

(# $successfulImplementation ?pattern ?

context)

(# $preferredPattern ?pattern ?context)

)

;; Improving development strategies

(# $implies

(# $implementationFailed ?strategy ?

reason)

(# $avoidStrategy ?strategy ?

similarContext))

Listing 9: Learning from experience

5.5 Results

Our prototype demonstrates:

� Autonomous feature development:
Agent independently implements CycL
parsing, advanced inference rules, and
performance optimizations

� Self-improving architecture: Code qual-
ity and development velocity improve over
time

� Formal verification: All implementations
verified against formal specifications

� Knowledge accumulation: Develop-
ment expertise encoded and reused across
projects

6 Theoretical Foundations

6.1 Soundness Guarantees

Our framework provides several levels of correct-
ness guarantees:

Logical Soundness: All inferences per-
formed by the OpenCyc knowledge base are log-
ically sound, ensuring that derived conclusions
follow validly from premises.

Specification Compliance: Generated code
is verified against formal specifications using the-
orem provers, providing mathematical guaran-
tees of correctness.

Architectural Consistency: The knowl-
edge base maintains invariants about software
architecture, preventing the introduction of ar-
chitectural violations.

Development Process Correctness: The
autonomous development cycle follows verified

5

software engineering methodologies encoded in
the knowledge base.

6.2 Completeness Considerations

While our framework cannot guarantee com-
pleteness (finding all possible solutions), it pro-
vides several completeness improvements over
current approaches:

Systematic Exploration: The knowledge
base guides the agent to explore solution spaces
systematically rather than randomly.

Cumulative Learning: Previous solutions
are retained and reused, preventing redundant
exploration.

Formal Guidance: Theorem provers guide
the search toward provably correct solutions.

6.3 Termination and Convergence

The autonomous development cycle is designed
to converge toward optimal solutions:

Monotonic Improvement: Each successful
implementation improves the system’s capabili-
ties without degrading existing functionality.

Bounded Search: Formal specifications
bound the search space for solutions.

Progress Metrics: Quantitative measures
ensure forward progress in each development cy-
cle.

7 Comparison with Related
Work

Table 1: Comparison with AI-Assisted Develop-
ment Tools

Approach Knowledge Formal Autonomous Self-
Persistence Reasoning Planning Improvement

GitHub Copilot None None None None
ChatGPT/Claude Session-only Informal Reactive None
Our Framework Persistent KB Formal Logic Autonomous Continuous

Table 2: Comparison with Formal Verification
Systems

System Automation Learning Development
Level Capability Integration

ACL2 Manual proofs None External
Lean4 Semi-automated Limited External
Coq Manual proofs None External
Our Framework Fully Automated Continuous Integrated

8 Applications and Use Cases

8.1 Autonomous System Develop-
ment

Critical Systems: Autonomous agents can de-
velop safety-critical software with formal verifi-
cation guarantees, suitable for aerospace, medi-
cal devices, and autonomous vehicles.
Infrastructure Software: Self-improving

compilers, operating systems, and database sys-
tems that optimize themselves based on usage
patterns and performance data.

8.2 Research Acceleration

Theorem Proving: Agents that autonomously
discover and prove mathematical theorems, ac-
celerating research in logic and mathematics.
Algorithm Discovery: Systematic explo-

ration of algorithmic design spaces with formal
correctness guarantees.

8.3 Educational Applications

Intelligent Tutoring: Systems that under-
stand student programming errors through for-
mal analysis and provide targeted guidance.
Curriculum Development: Autonomous

generation of programming exercises with veri-
fied solutions and difficulty progression.

9 Challenges and Future Work

9.1 Scalability Challenges

Knowledge Base Size: As the OpenCyc
knowledge base grows, inference performance

6

may degrade. Future work should explore hier-
archical knowledge organization, lazy evaluation
strategies, and distributed reasoning systems.

Verification Complexity: Formal verifica-
tion of large systems remains computationally
challenging. Potential solutions include compo-
sitional verification techniques, approximate ver-
ification for non-critical components, and ma-
chine learning-guided proof search.

9.2 Integration Challenges

Tool Ecosystem: Integrating diverse verifica-
tion tools (ACL2, Lean4, Coq) requires stan-
dardized specification languages, universal proof
formats, and cross-system knowledge transla-
tion.

Human-Agent Collaboration: Balancing
autonomous operation with human oversight
requires explainable AI techniques, human-
interpretable knowledge representations, and
graceful degradation when human intervention
is needed.

9.3 Future Research Directions

Multi-Agent Development: Teams of spe-
cialized agents collaborating on large software
projects with architecture agents, implementa-
tion agents, testing agents, and performance
agents.

Cross-Domain Knowledge Transfer: Ap-
plying development knowledge learned in one do-
main to another, including web development pat-
terns applied to systems programming and algo-
rithmic optimizations transferred between prob-
lem domains.

Evolutionary Software Architecture:
Systems that autonomously evolve their archi-
tecture based on changing requirements through
automatic refactoring, performance-driven
transformations, and security-aware system
hardening.

10 Conclusion

We have presented a novel framework for au-
tonomous software development that combines

formal knowledge representation, large language
models, and machine verification systems. Our
approach addresses fundamental limitations of
current AI-assisted development tools by provid-
ing:

1. Persistent Knowledge: Formal encoding
of software engineering principles and devel-
opment history

2. Autonomous Planning: Self-directed
identification of development priorities and
implementation strategies

3. Formal Verification: Mathematical guar-
antees of software correctness through inte-
grated theorem proving

4. Continuous Learning: Self-improvement
through experience and knowledge accumu-
lation

The framework demonstrates practical feasi-
bility through our OpenCyc implementation case
study, showing how an agent can autonomously
develop and improve its own knowledge base sys-
tem while maintaining formal correctness guar-
antees.

This work opens new research directions at
the intersection of artificial intelligence, formal
methods, and software engineering. The poten-
tial applications span from safety-critical sys-
tems development to research acceleration and
educational tools.

Most significantly, our framework provides a
path toward genuinely autonomous software en-
gineering - systems that can understand, design,
implement, and verify complex software systems
with minimal human intervention while main-
taining mathematical guarantees of correctness.

As AI systems become increasingly capable,
the integration of formal knowledge representa-
tion and machine verification becomes essential
for ensuring their reliability and safety. Our
framework demonstrates that this integration
is not only possible but practically achievable,
paving the way for a new generation of au-
tonomous development systems.

7

References

[1] Lenat, D. B. (1995). CYC: A large-scale in-
vestment in knowledge infrastructure. Com-
munications of the ACM, 38(11), 33-38.

[2] Kaufmann, M., Manolios, P., & Moore, J.
S. (2000). Computer-aided reasoning: An ap-
proach. Kluwer Academic Publishers.

[3] de Moura, L., Kong, S., Avigad, J., van
Doorn, F., & von Raumer, J. (2015). The
Lean theorem prover. International Confer-
ence on Automated Deduction, 378-388.

[4] Chen, M., Tworek, J., Jun, H., Yuan,
Q., Pinto, H. P. D. O., Kaplan, J., ... &
Zaremba, W. (2021). Evaluating large lan-
guage models trained on code. arXiv preprint
arXiv:2107.03374.

[5] Solar-Lezama, A. (2008). Program synthesis
by sketching. UC Berkeley.

[6] Torlak, E., & Bodik, R. (2014). A lightweight
symbolic virtual machine for solver-aided
host languages. ACM SIGPLAN Notices,
49(6), 530-541.

[7] Gulwani, S., Polozov, O., & Singh, R. (2017).
Program synthesis. Foundations and Trends
in Programming Languages, 4(1-2), 1-119.

[8] Reynolds, A., Deters, M., Kuncak,
V., Tinelli, C., & Barrett, C. (2015).
Counterexample-guided quantifier instanti-
ation for synthesis in SMT. International
Conference on Computer Aided Verification,
198-216.

8

