
The FRDCSA Project: A Systematic Approach to

Software Integration for Enhanced Problem-Solving

Capabilities

Andrew J. Dougherty

December 17, 2024

Abstract

This paper presents the Formalized Research Database: Cluster,
Study and Apply (FRDCSA) project, a systematic effort to advance ar-
tificial intelligence capabilities through large-scale software integration
and packaging. We present theoretical results demonstrating that in-
creased program complexity is necessary for enhanced problem-solving
capabilities, and argue that systematic software collection and integra-
tion represents an efficient path toward this goal. Based on results from
algorithmic information theory, we establish constraints that apply to
sequences of increasingly powerful programs, namely that increased
program size is ultimately a necessary but insufficient condition for
increased capabilities. The paper details both the theoretical foun-
dations and practical implementation of a system designed to collect,
package, and integrate existing Free/Libre software to create enhanced
problem-solving capabilities. We present empirical results from over 18
years of development, including the successful integration of over 2,400
Perl modules, 1000 Prolog files, and 1100 internal projects.

1 Introduction

The development of artificial intelligence systems capable of addressing real-
world problems remains a central challenge in computer science. While much
attention has focused on developing individual algorithms or specialized sys-
tems, we propose that significant advances can be achieved through system-
atic integration of existing software tools. This approach is motivated by
theoretical results in algorithmic information theory that establish funda-
mental relationships between program size and problem-solving capabilities.

1.1 Motivation

Consider the problem of accident prevention in real-world scenarios. Tradi-
tional approaches focus on specific domains or use cases, but our analysis

1

suggests that a more comprehensive approach is needed. The FRDCSA
project posits that every failed deduction potentially leads to future acci-
dents, and therefore a systematic approach to enhancing deductive capabili-
ties is essential for preventing avoidable accidents and reducing psychological
suffering.

2 Theoretical Foundation

2.1 Core Theoretical Result

Let us define the following:

� TR: the set of all total-recursive functions

� PR: the set of all partial-recursive functions

� S: an undecidable logic

� LS : the class of formulae in the language of S

� G: G ∈ PR and G : LS → N (partial-recursive bijection from formulae
in LS to integers)

� Th(S): {φ : S |= φ} (true formulae in L)

� GTh(S,G): {G(φ) : φ ∈ Th(S)} (Gödel numbers of valid formula in
S)

We further define:

Enum(p ∈ TR,C) := the set of integers enumerated by function p (1)

Len(p) := number of symbols in the definition of p (2)

K(p ∈ TR,C) := µ.len(q)(q ∈ TR ∧ Enum(q, U) = Enum(p, C)) (3)

Theorem 2.1 (Size-Capability Relationship). For any program p, there
exists another program q which is both larger (Kolmogorov-complexity wise)
and stronger (proof-theoretically), i.e.,

∀p ∈ TR(∃q ∈ TR(Larger(q, p) ∧ Stronger(q, p)))

This result demonstrates that increased program size is ultimately nec-
essary for enhanced problem-solving capabilities.

2

2.2 Information Theoretic Considerations

Following Chaitin’s work, we can show that program complexity serves as an
upper bound on proof-theoretic capacity as measured by set-inclusion. For
any set of theorems constituting t bits of information, and a set of axioms
containing less than t bits of information, it is impossible to deduce these
theorems from these axioms.

3 System Architecture

3.1 RADAR (Rapid Application Detection and Retrieval)

RADAR employs several concurrent strategies for software discovery:

� Focused crawling of project sites using tools like iVia, WebKB, Rain-
bow

� Automatic mapping of web content using Minorthird, MnM, Melita,
Gate

� Ontology management through Kaon, Protege, Cyc, Powerloom

� Query expansion and template-based searching

The system maintains an ontology that captures:

� Software capabilities and features

� Dependencies and requirements

� Licensing information

� Author and maintenance details

� Release history and versioning

3.2 Packager System

The Packager system implements a sophisticated workflow:

3.3 Architect System

The Architect system implements capability matching through:

� Feature vector analysis of software capabilities

� Semantic matching of problem requirements

� Automated planning for software integration

� Component composition validation

3

Algorithm 1 Package Generation Workflow

1: Identify software dependencies
2: Resolve version conflicts
3: Generate build instructions
4: Create package metadata
5: Build package
6: Verify package integrity
7: Deploy to repository

4 Integration Framework

4.1 UniLang Multi-Agent System

The UniLang system provides:

� Cross-language communication protocols

� Agent lifecycle management

� Message routing and delivery

� State synchronization

� Error handling and recovery

Current language support includes:

� Perl (primary integration language)

� Prolog (logical reasoning)

� Java (platform compatibility)

� Emacs Lisp (user interface)

� Python (through wrappers)

� C/C++ (through FFI)

5 Implementation and Current Status

5.1 Software Collection Metrics

Current system statistics:

� 256+ AI systems packaged

� 1100+ internal projects

4

� 2,400+ Perl modules

� 1000+ Prolog files

� 1,000,000+ indexed codebases

5.2 Integration Examples

Example of a typical integration workflow:

UniLang agent r e g i s t r a t i o n
my $agent = new BOSS : : Agent (

name => ’ package=manager ’ ,
c a p a b i l i t i e s => [’ so f tware=i n t e g r a t i o n ’]

) ;

Reg i s t e r wi th message bus
$agent=>r e g i s t e r () ;

Handle i n t e g r a t i o n r e qu e s t s
$agent=>on message (sub {

my ($msg) = @ ;
i f ($msg=>{type} eq ’ i n t e g r a t i o n=r eque s t ’) {

h a n d l e i n t e g r a t i o n ($msg=>{data }) ;
}

}) ;

6 Applications

6.1 Accident Prevention

The system implements prevention strategies through:

� Real-time monitoring and analysis

� Pattern recognition in hazardous scenarios

� Automated intervention planning

� Risk assessment and mitigation

6.2 Knowledge Integration

Knowledge integration is achieved through:

� Automated theorem proving

5

� Natural language processing

� Semantic web technologies

� Machine learning techniques

7 Future Directions

Key development priorities:

� Expand package collection to 500,000+ systems

� Enhance automated integration capabilities

� Improve theorem proving performance

� Develop better user interfaces

� Implement advanced planning algorithms

8 Conclusion

The FRDCSA project represents a novel approach to artificial intelligence
development, based on systematic software integration and theoretical foun-
dations in algorithmic information theory. By focusing on comprehensive
software collection and integration, it provides a practical path toward en-
hanced problem-solving capabilities while acknowledging fundamental the-
oretical constraints.

References

[1] Chaitin, G.J. (1974). Information-theoretic limitations of formal sys-
tems. Journal of the ACM, 21(3), 403-424.

[2] Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Math-
ematica und verwandter Systeme I. Monatshefte für Mathematik und
Physik, 38(1), 173-198.

[3] Turing, A.M. (1939). Systems of Logic Based on Ordinals. Proceedings
of the London Mathematical Society, s2-45(1), 161-228.

[4] Dougherty, A.J. (2011). Temporal planning and inferencing for personal
task management with spse2. FRDCSA Technical Report.

6

	Introduction
	Motivation

	Theoretical Foundation
	Core Theoretical Result
	Information Theoretic Considerations

	System Architecture
	RADAR (Rapid Application Detection and Retrieval)
	Packager System
	Architect System

	Integration Framework
	UniLang Multi-Agent System

	Implementation and Current Status
	Software Collection Metrics
	Integration Examples

	Applications
	Accident Prevention
	Knowledge Integration

	Future Directions
	Conclusion

